Parallel between UOP’s Reforming and Dehydrogenation Technologies and Catalysts

Meeting Program – March 2017

Manuela Serban
Manuela Serban
Principal Research Scientist,
Honeywell UOP

 

Abstract – With significant experience in Continuous Catalyst Regeneration (CCR) reforming technology, i.e., Platforming™ process, Honeywell’s UOP was uniquely positioned to invent, develop and commercialize 25 years ago, a CCR-type light paraffins dehydrogenation technology, i.e., Oleflex™ process, leveraging on the Platforming technology. These two technologies represent two of UOP’s core technologies and together with their catalysts, are being continuously improved and optimized to maximize end-user profitability. Currently there are 300+ CCR Platforming units and 25+ Oleflex units operating worldwide, with more in construction or in commission. This presentation will highlight similarities and differences between the Platforming and Oleflex technologies and catalysts. We will discuss the chemical and physical requirements and properties for the two types of catalysts, the main catalysts deactivation routes, and highlight some of UOP’s characterization tools and expertise used to develop new reforming and dehydrogenation catalysts and diagnose different symptoms related to aged commercial catalysts.

Biography – Manuela Serban is a Principal Research Scientist in the Olefins and Detergents Development Group leading teams responsible for the development of new Oleflex catalyst generations. Manuela has over 12 years of experience with UOP, including reforming technology and catalysts, catalytic hydrodesulfurization, flue gas desulfurization for coal gasification plants, breakthrough liquid fuels decontamination techniques. She is the author of several articles in peer reviewed Chemical Engineering journals and has 38 US patents. She has a PhD in Chemical Engineering from Worcester Polytechnic Institute and post-doctoral experience at Argonne National Laboratory.

Biomass and Natural Gas Valorization by Zeolite Catalysis

Meeting Program – February 2017

Raul Lobo
Raul Lobo
Claire D. LeClaire professor of Chemical and Biomolecular Engineering,
University of Delaware

 

Abstract – Prof. Lobo’s research group is interested in developing and understanding catalysis systems to enable the transformation abundant, inexpensive and—when possible—renewable carbon sources into feedstocks for the chemical industry. We combine expertise in materials synthesis, catalysis and kinetics, and reaction engineering to develop novel catalysts and catalytic processes that produce valuable products.

In the first part I will focus on C-C bond forming reactions that are helpful in the transformation of furans (produced from glucose or xylose by dehydration) into valuable commodity chemicals. To this end we have developed and optimized zeolite catalyst compositions to form aromatic species out of the furans via Diels-Alder reactions and Friedel-Craft acylation reactions. We will describe efforts to producing benzoic acid and α-methylstyrene from furans in high selectivity and high yield, along with the elucidation of the reaction mechanisms of these reactions.

In the second part I will discuss on-going research directed towards the development of catalysts for the selective oxidation of methane into methanol. We will show that zeolites can serve as hosts of transition metals oxide clusters (copper or iron) that are analogous to metal oxide clusters observed in a number of important enzymes such as particulate methane monooxygenase (pMMO). These clusters are capable of oxidizing methane to methanol, carbon monoxide and CO2. By selectively choosing materials that compartmentalize Cu-O clusters, we have identified zeolite structures that are able to selectively oxidize methane to methanol with very high selectivity in a three-step cyclic process. We will describe the potential and the drawbacks of transforming such cyclic process into a catalytic process for methanol production.

Despite the maturity of the field of catalysis this talk will show that tantalizing new opportunities emerge from the discovery of new catalyst structures and compositions, and from improvements in our control of the composition of metal clusters in nanoscopic environments.

Biography – Raul F. Lobo is the Claire D. LeClaire professor of Chemical and Biomolecular Engineering at the University of Delaware and Director of the Center for Catalytic Science and Technology. His research interests span the development of novel porous materials for catalysis and separations, the chemistry of zeolites, catalysis for energy and the environment, and the scientific aspects of catalyst synthesis. He has published over one hundred fifty refereed reports and he is co-inventor in three US patents. He obtained his undergraduate degree in Chemical Engineering at the University of Costa Rica in 1989 and later moved to California to pursue graduate studies in Chemical Engineering at Caltech. He worked for one year at Los Alamos National Laboratory, New Mexico as a postdoctoral fellow and he started his academic career at the University of Delaware in 1995.

Prof. Lobo has conducted research in the use of zeolites for nitrogen/oxygen separations, and carbon dioxide separations from flue gases. He has contributed to the fundamentals of zeolite nucleation and crystal growth and to the application of zeolites for a number of catalytic applications. In particular his group research helped understand the mechanisms of reaction and stability of zeolite catalysts used for the removal of NOx gases from combustion exhaust, developed catalytic materials for the transformation of biomass-derived furans into commodity aromatic molecules such as xylenes and benzoic acid and discovered materials for the selective activation of methane using copper oxide clusters.

Ciapetta Award Lecture: Novel Zeolite Catalysts for Diesel Emission Applications

Meeting Program – January 2017

Ahmad Moini
Ahmad Moini
BASF Corporation

 

Abstract – Automotive exhaust conditions present unique challenges for the design of effective catalysts. In addition to the need for catalytic activity over a wide temperature range, the catalyst must show durability towards extreme hydrothermal aging conditions. The use of zeolitic materials under such conditions is especially challenging due to the vulnerability of zeolites to steam aging. The BASF discovery of the Cu-CHA catalyst for selective catalytic reduction (SCR) of NOx demonstrated an effective balance between favorable active sites and zeolite framework durability. It also paved the way for the implementation of urea SCR as the key approach for NOx reduction in diesel vehicles. This presentation will highlight the development of Cu-CHA as the leading technology for diesel emission applications. Specific focus will be placed on the synthesis and structural features of the zeolite. In addition, there will be a discussion of specific characterization and modeling approaches focusing on the unique attributes of the metal active sites and the interaction of these metal species with the zeolite framework.

Biography – Dr. Ahmad Moini is a Research Fellow at BASF Corporation in Iselin, NJ. He obtained his Ph.D. in Chemistry from Texas A&M University, and held a postdoctoral appointment at Michigan State University. Dr. Moini started his career at Mobil Research & Development Corporation (now ExxonMobil), where he conducted research on microporous materials. With a focus on exploratory zeolite synthesis, he studied the mechanism of zeolite crystallization and the role of specific classes of organic directing agents in the formation of various zeolite frameworks. He joined Engelhard Corporation (now BASF) in 1996. Since then, his primary research interests have been in the area of materials synthesis, directed at a range of catalytic and functional applications. He applied high throughput methods for the synthesis and evaluation of catalytic materials, and used these tools for the development of new products. A significant part of his work has been directed towards catalysts for environmental applications. These efforts, in collaboration with the extended BASF team, led to the discovery and development of Cu-CHA catalyst for selective catalytic reduction (SCR) of NOx from diesel vehicles. He holds 48 US patents relating to various aspects of materials and catalyst development.

Unraveling Catalytic Mechanisms and Kinetics: Lessons from Electrical Networks

Meeting Program – November 2016

Ravindra Datta
Professor Ravindra Datta
Professor in the Department of Chemical Engineering,
Fuel Cell Center,
Worchester Polytechnic Institute

 

Abstract – Catalytic reaction networks, in general, comprise of multiple steps and pathways. While one can now readily predict kinetics of these molecular steps from first principles, there is not yet available a comprehensive framework for: 1) visualizing and analyzing these reaction networks in their full complexity; and 2) unequivocally identifying the germane steps and pathways.

Thus, we have developed an approach called the “Reaction Route (RR) Graph” approach, which allows: 1) direct enumeration of all the pathways as walks on the RR Graph; 2) thermodynamic consistence of step kinetics; 3) elucidation of dominant pathways that contribute materially to the overall flux; 4) identification of bottleneck steps in each of these pathways; and 5) development of explicit rate laws based on the electrical analogy.

The electrical network analogy is based on two aspects of RR Graphs, namely: 1) quasi-steady state (QSS) mass balance of intermediate species, the equivalent of the Kirchhoff’s Current Law (KCL) of electrical circuits; and 2) Hess’s law, or thermodynamic consistence, the equivalent of the Kirchhoff’s Potential Law (KPL), which makes RR Graphs precisely equivalent to electrical networks. Further, we define the step resistance in terms of step kinetics to make the analogy complete. The approach is described with the help of the water-gas shift example.

Biography – Ravi Datta is Professor of Chemical Engineering and Director of WPI Fuel Cell Center. He obtained his Ph.D. degree from the University of California, Santa Barbara, in 1981. From then until 1998, he was a Professor of Chemical Engineering at the University of Iowa, when he moved to WPI, and served as Chemical Engineering Department Head until 2005. Ravi’s research is focused on catalytic and electrocatalytic reaction engineering of Clean Energy, including, fuel cells, hydrogen, renewable fuels, novel catalysts, and catalytic reaction networks. He is a coauthor of 150 papers and 8 patents, and has been a mentor to 25 doctoral students.

Development of heterogeneous catalysts for the production of biomass-derived chemicals by selective C-O hydrogenolysis and deoxydehydration

Meeting Program – October 2016

Keiichi Tomishige
Keiichi Tomishige
Professor in the School of Engineering,
Tohoku University

 

Keiichi Tomishige

Abstract – Chemical composition of the feedstock from biomass and biomass-based building blocks has much higher oxygen contents than that from crude oil. It has been known that the target products such as monomers for the polymer synthesis have comparatively lower oxygen content, and the methodology for the decrease of the oxygen content is more and more important. One of effective methods is the utilization of the hydrogenolysis of C-O bonds in the substrates. For example, C3-C6 sugar alcohols (glycerol, erythritol, xylitol, and sorbitol) are also regarded as promising building blocks in the biomass refinery. If the selective hydrogenolysis of the target C-O bond among various kinds of the C-O bonds is possible, valuable chemicals such as diols, mono-ols, alkanes can be produced from biomass in high yield. ReOx-modified Ir metal catalyst (Ir-ReOx) is reported to be effective to the selective hydrogenolysis of polyols and cyclic ethers in water solvent. Ir-ReOx/SiO2 catalyzes the hydrogenolysis of glycerol to 1,3-propanediol. The hydrogenolysis of erythritol over the catalyst produces 1,4- and 1,3-butanediols. The selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol also proceeds using Ir-ReOx/SiO2. In addition, the combination of Ir-ReOx/SiO2 with H-ZSM-5 gives n-alkanes and hexanols from cellulose, sugars, and sugar alcohols in high yield with the total C-O hydrogenolysis and without C-C bond dissociation and skeletal isomerization. Another interesting catalyst is ReOx-Pd/CeO2. The catalyst showed excellent performance for simultaneous hydrodeoxygenation of vicinal OH groups in various substrates. High yield (>99%), turnover frequency, and turnover number were obtained in the reaction of 1,4-anhydroerythritol to tetrahydrofuran. This catalyst is also applicable to the conversion of sugar alcohols mono-alcohols and diols are obtained in high yields from substrates with even and odd numbers of OH groups, respectively. In addition, ReOx-Au/CeO2 catalyzed the conversion of glycerol and erythritol to allyl alcohol and 1,3-butadiene in high yield (91% and 81%), respectively.

Biography – Keiichi Tomishige received his B.S., M.S. and Ph.D. from Graduate School of Science, Department of Chemistry, The University of Tokyo with Prof. Y. Iwasawa. During his Ph.D. course in 1994, he moved to Graduate School of Engineering, The University of Tokyo as a research associate and worked with Prof. K. Fujimoto. In 1998, he became a lecturer, and then he moved to Institute of Materials Science, University of Tsukuba as a lecturer in 2001. Since 2004 he has been an associate professor, Graduate School of Pure and Applied Sciences, University of Tsukuba. Since 2010, he is a professor, School of Engineering, Tohoku University.
His research interests are the development of heterogeneous catalysts for

  1. production of biomass-derived chemicals
  2. direct synthesis of organic carbonates from CO2 and alcohols
  3. steam reforming of biomass tar
  4. syngas production by natural gas reforming

He is Associate Editor of Fuel Processing Technology (2014/2-), Editorial board of Applied Catalysis A:General (2009/4-), Editorial advisory board of ACS Catalysis (2013/11-), International Advisory Board of ChemSusChem (2015/1-) and Advisory Board of Green Chemistry(2016/8-).

Prof. Dion Vlachos is the Winner of the 2016 Catalysis Club of Philadelphia Award

Dion VlachosThe Catalysis Club of Philadelphia is pleased to announce Prof. Dion Vlachos as the recipient of the 2016 Catalysis Club of Philadelphia Award, in recognition of his long-standing creative technical contributions, both theoretical and experimental; advancing the understanding of the molecular basis of heterogeneous catalysis of complex systems; and his leadership role at the Catalysis Center for Energy Innovation and Center for Catalytic Science and Technology.

Prof. Vlachos received his PhD form the Chemical Engineering and Materials Science Department, University of Minnesota, where he studied the structures and dynamics of adsorbed phases and crystal surfaces. He joined the Chemical Engineering Department at the University of Massachusetts in 1993 as an Assistant Professor and in 1998 became an Associate Professor at the department. In 2000, Dion joined the Department of Engineering at the University of Delaware, where he currently holds a position as Elizabeth Inez Kelley Professor of Chemical Engineering.

Dion has pioneered the work on development of multi-scale modeling and applying this approach to technologically important problems in energy, catalysis, biomass conversion, nanotechnology and cellular engineering. His research has been adopted by chemical industry in companies, such as ConocoPhillips, Praxair, and Rohm and Haas, for chemical processes design and emissions reduction.

Dion’s research of biomass conversion, specifically catalytic transformation of sugars into fuels and chemicals, helped to advance the understanding of sugar chemistry. His work on the elucidation of active species in HCl/CrCl3 involved in sugar transformations resulted in a high impact publication with a record number of citations. His theoretical study of Sn-Beta catalyst for glucose isomerization has found the active form of tin in the zeolite and revealed the importance of neighboring silanol groups for the selectivity of the isomerization reaction. Dion’s theoretical work was later confirmed experimentally by Davis group in Caltech.

As the founder and director of the Catalysis Center for Energy Innovation (CCEI), Dion has shown an outstanding leadership and obtained $29.5M in funding over nine years. Through CCEI, he helped to nurture collaborations between research groups from leading academic institutions. CCEI focuses on the development of new catalysis and processes for biomass conversion to fuel and chemicals.

Dion has published over 340 scientific papers, which collectively have over 9400 citations. In the past few years, he has been publishing over 30 research papers per year, which makes Dion one of the most productive catalysis researchers.

Please join us in congratulating Dion on receiving the 2016 Catalysis Club of Philadelphia award.

Past Recipients of the Award

1968 Adalbert Farkas
1969 Charles J. Plank
1970 Paul H. Emmett
1971 G. Alex Mills
1972 Alfred E. Hirschler
1973 Paul B. Weisz
1974 Roland C. Hansford
1975 Paul Venuto
1976 Heinz Heinemann
1977 G.C.A. Schuit
1978 George W. Parshall
1979 Alvin B. Stiles
1980 Abraham Schneider
1981 James F. Roth
1982 Robert Eischens
1983 Edward Rosinski
1984 James R. Katzer
1985 N.Y. Chen
1986 Bruce C. Gates
1987 James E. Lyons
1988 George Kokotailo
1989 Maurice Mitchell, Jr.
1990 Werner O. Haag
1991 John A. Sofranko
1992 Fran Waller
1993 George Kerr
1994 Theodore A. Koch
1995 John N. Armor
1996 Mae Rubin
1997 Leo E. Manzer
1998 Ray Gorte
1999 Anne M. Gaffney
2000 Henry C. Foley
2001 Mark Barteau
2002 Steven D. Ittel
2003 Frank E. Herkes
2004 Jingguang Chen
2005 Israel Wachs
2006 James Dumesic
2007 John Vohs
2008 David Olson
2009 Ted Oyama
2010 Chuck Coe
2011 Chunshan Song
2012 Rostam Madon
2013 Daniel Resasco
2014 Haiying Chen
2015 Sourav Sengupta
2016 Dion Vlachos

Call for Nominations of the 2016 Catalysis Club of Philadelphia Award

Each year the Catalysis Club of Philadelphia recognizes an outstanding member of the catalysis community, who has made significant contributions to the advancement of Catalysis. Such advancement can be scientific, technological, or in organization leadership. The Award consists of a plaque and a $1,000 cash prize.
 
We appreciate your help in submitting nominations. The entire nomination package, including a resume and recommendation letters, should not be more than 10 pages and should include a ½ page tentative award announcement. The deadline for the receipt of nominations is Thursday, March 31, 2016. Prior nomination packages sent in 2014 or later will automatically be considered for the 2016 Award.
 
Nomination letters along with supporting materials should be emailed to vnikolak@wlgore.com
 
Vladimiros Nikolakis
W.L. Gore and Associates Inc.
101 Lewisville Rd.
Elkton, MD 21921

 

Past Recipients of the Award

1968 Adalbert Farkas
1969 Charles J. Plank
1970 Paul H. Emmett
1971 G. Alex Mills
1972 Alfred E. Hirschler
1973 Paul B. Weisz
1974 Roland C. Hansford
1975 Paul Venuto
1976 Heinz Heinemann
1977 G.C.A. Schuit
1978 George W. Parshall
1979 Alvin B. Stiles
1980 Abraham Schneider
1981 James F. Roth
1982 Robert Eischens
1983 Edward Rosinski
1984 James R. Katzer
1985 N.Y. Chen
1986 Bruce C. Gates
1987 James E. Lyons
1988 George Kokotailo
1989 Maurice Mitchell, Jr.
1990 Werner O. Haag
1991 John A. Sofranko
1992 Fran Waller
1993 George Kerr
1994 Theodore A. Koch
1995 John N. Armor
1996 Mae Rubin
1997 Leo E. Manzer
1998 Ray Gorte
1999 Anne M. Gaffney
2000 Henry C. Foley
2001 Mark Barteau
2002 Steven D. Ittel
2003 Frank E. Herkes
2004 Jingguang Chen
2005 Israel Wachs
2006 James Dumesic
2007 John Vohs
2008 David Olson
2009 Ted Oyama
2010 Chuck Coe
2011 Chunshan Song
2012 Rostam Madon
2013 Daniel Resasco
2014 Haiying Chen
2015 Sourav Sengupta
2016 Dion Vlachos