Production of para-methylstyrene and para-divinylbenzene from furanic compounds

2017 Spring Symposium

Mol­ly Koehle and Raul Lobo, Chem­i­cal and Bio­mol­e­c­u­lar Engi­neer­ing, Uni­ver­si­ty of Delaware, Newark, DE

Abstract — Of the three iso­mers of methyl­styrene, para-methyl­styrene is high­ly desir­able because it yields poly­mers with supe­ri­or prop­er­ties over poly­styrene and mixed poly-methyl­styrene [1]. How­ev­er, con­trol­ling the sub­sti­tu­tion of methyl­styrene via direct acy­la­tion or alky­la­tion of toluene is dif­fi­cult because even though the para iso­mer is favored, meta and ortho iso­mers are also formed [1, 2], and sep­a­ra­tion of the iso­mer mix­ture is very dif­fi­cult due to their near­ly iden­ti­cal prop­er­ties.

The Diels-Alder cycload­di­tion and dehy­dra­tion of sub­sti­tut­ed furans with eth­yl­ene is a plau­si­ble route to p-methyl­styrene since it is inher­ent­ly selec­tive to para aro­mat­ic species. We have suc­cess­ful­ly devel­oped a three-step cat­alyt­ic route to p-methyl­styrene from methyl­fu­ran (Scheme 1) at high yield and very high iso­mer selec­tiv­i­ty. The process uses Friedel-Crafts acy­la­tion, selec­tive reduc­tions with hydro­gen and Diels-Alder cycload­di­tion with eth­yl­ene. The raw materials—furans, eth­yl­ene and acetic acid—can all be derived from bio­mass [3,4], thus allow­ing ‘green’ styrene pro­duc­tion from renew­able car­bon sources. This approach has also been extend­ed to the pro­duc­tion of p-divinyl­ben­zene. As the acy­la­tion step is known to be cat­alyzed by Lewis acids, recent work has focused on study­ing this step on Brøn­st­ed and Lewis acid zeo­lites and will be pre­sent­ed as well.

Scheme 1: Pro­duc­tion of para-methyl­styrene from methyl­fu­ran

Ref­er­ences:
[1] W.W. Kaed­ing and G.C. Bar­ile, in: B.M. Cul­bert­son and C.U. Pittman, Jr. (Eds.), New Monomers and Poly­mers, Plenum Press, New York, NY, 1984, pp. 223–241.
[2]“Aromatic Sub­sti­tu­tion Reac­tions.” http://​www2​.chem​istry​.msu​.edu/​f​a​c​u​l​t​y​/​r​e​u​s​c​h​/​V​i​r​t​T​x​t​J​m​l​/​b​e​n​z​r​x​1​.​htm
[3] A.A. Rosatel­la; S.P. Sime­onov; R.F.M. Frade, R.F.M..; C.A.M. Afon­so, Green Chem., 13 (2011) 754.
[4] C.H. Chris­tensen; J. Rass-Hansen; C.C. Mars­den; E. Taarn­ing; K. Ege­blad, Chem­SusChem, 1 (2008) 283.

Biog­ra­phy — Mol­ly obtained her B.S. in Chem­i­cal Engi­neer­ing from the Uni­ver­si­ty of Pitts­burgh and her M.S. in Chem­i­cal Engi­neer­ing from the Uni­ver­si­ty of Con­necti­cut. She has worked at the Catal­y­sis Cen­ter for Ener­gy Inno­va­tion in Prof. Raul Lobo’s group since 2013. Her work focus­es on trans­for­ma­tions of bio­mass to fuels and chem­i­cals with Bron­st­ed and Lewis acid zeo­lites.

The mechanism of CO2 reduction over Pd/Al2O3: a combined steady state isotope transient kinetic analysis (SSITKA) and operando FTIR investigation

2017 Spring Symposium

Xiang Wang, Hui Shi and János Szanyi, Insti­tute for Inte­grat­ed Catal­y­sis, Pacif­ic North­west Nation­al Lab­o­ra­to­ry, Rich­land, WA

Abstract — Under­stand­ing the crit­i­cal steps involved in the het­ero­ge­neous cat­alyt­ic CO2 reduc­tion has attract­ed a lot of atten­tion recent­ly. In order to ful­ly under­stand the mech­a­nism of this reac­tion the deter­mi­na­tion of both the rate-deter­min­ing steps and reac­tion inter­me­di­ates are vital. Steady-State Iso­topic Tran­sient Kinet­ic Analy­sis (SSITKA) is one of the most pow­er­ful tech­niques used to inves­ti­gate the ele­men­tary steps under steady-state reac­tion con­di­tions. This tech­nique pro­vides valu­able infor­ma­tion on mean res­i­dent life­time of sur­face inter­me­di­ates, sur­face con­cen­tra­tions of adsorbed reac­tant species and an upper bound of the turnover fre­quen­cy. Cou­pling SSITKA with operan­do-FTIR spec­troscopy allows us to dis­crim­i­nate between active and spec­ta­tor species present on the cat­alyt­ic sur­face under steady state reac­tion con­di­tions.  In the present work operan­do SSITKA exper­i­ments cou­pled with trans­mis­sion FTIR, mass spec­trom­e­try (MS) and gas chro­matog­ra­phy (GC) were per­formed to probe both the chem­i­cal nature and kinet­ics of reac­tive inter­me­di­ates over a Pd-Al2O3 cat­a­lysts and pro­vide a clear mech­a­nis­tic pic­ture of the CO2 hydro­gena­tion reac­tion by reveal­ing the rate-deter­min­ing steps for CH4 and CO pro­duc­tion.

Fig­ure 1 shows nor­mal­ized real-time sig­nals for the decay and increase of methane (a) and car­bon-monox­ide (b) in the efflu­ent at 533 K reac­tion tem­per­a­ture after the feed gas was switched at 0 s from CO2/H2/Ar mix­ture to 13CO2/H2 mix­ture.  With increas­ing tem­per­a­ture, the decay of CH4 and CO get faster.  By inte­gra­tion under the decay curves , the mean sur­face-res­i­dence times CH4 and  CO), the abun­dance of adsorbed sur­face inter­me­di­ates lead­ing to CH4 and CO prod­ucts  CH4 and  CO) at 533–573 K were cal­cu­lat­ed. At low tem­per­a­ture, CO2 metha­na­tion is slow­er than the reverse water-gas shift reac­tion, but became faster as the tem­per­a­ture was increased over 563 K.  The sim­i­lar appar­ent acti­va­tion ener­gies obtained for the hydro­gena­tion of adsorbed CO and for the for­ma­tion of CH4 indi­cates that the hydro­gena­tion of CO is the rate-deter­min­ing step dur­ing the CO2 metha­na­tion reac­tion. More­over, the sim­i­lar appar­ent acti­va­tion ener­gies esti­mat­ed for the con­sump­tion of adsorbed for­mates (FTIR) and for the for­ma­tion of CO (MS), indi­cates that the H-assist­ed decom­po­si­tion of for­mates is the rate deter­min­ing step in the reverse water gas shift reac­tion.  The rate-deter­min­ing step for CO for­ma­tion is the con­ver­sion of adsorbed for­mate, while that for CH4 for­ma­tion is the hydro­gena­tion of adsorbed car­bonyl. The bal­ance of the hydro­gena­tion kinet­ics between adsorbed for­mates and car­bonyls gov­erns the selec­tiv­i­ties to CH4 and CO. We applied this knowl­edge to design cat­a­lysts and achieved high selec­tiv­i­ties to desired prod­ucts. 


Fig­ure 1. Nor­mal­ized response of (a) CH4 and 13CH4 prod­ucts and (b) CO and 13CO prod­ucts as func­tions of time.

Biog­ra­phy — Dr. Szanyi‘s research is focused on sur­face sci­ence, spec­troscopy and kinet­ic stud­ies on het­ero­ge­neous cat­alyt­ic reac­tion sys­tems aimed at under­stand­ing struc­ture-reac­tiv­i­ty rela­tion­ships. In par­tic­u­lar, he is inter­est­ed in under­stand­ing the mech­a­nis­tic con­se­quences of very high (atom­ic) met­al dis­per­sion on dif­fer­ent sup­port mate­ri­als. Using a series of ensem­ble aver­aged spec­troscopy meth­ods he inves­ti­gates the fun­da­men­tal prop­er­ties of met­al atoms and small met­al clus­ters pre­pared under well con­trolled UHV con­di­tions. These results pro­vide infor­ma­tion on the ener­get­ics of the inter­ac­tions between high­ly dis­persed met­als and select­ed probe mol­e­cules. Apply­ing in situ RAIR spec­troscopy they study the bind­ing con­fig­u­ra­tions of adsor­bates to met­als, and iden­ti­fy sur­face species present on the met­al and sup­port mate­ri­als under ele­vat­ed reac­tant pres­sures. Simul­ta­ne­ous­ly, they are con­duct­ing detailed kinet­ics and operan­do spec­troscopy mea­sure­ments on mod­el high sur­face area sup­port­ed met­al cat­a­lysts using flow reac­tors and SSITKA/FTIR/MS tech­niques. These mea­sure­ments pro­vide detailed kinet­ic infor­ma­tion togeth­er with sur­face spe­ci­a­tion that allow them to great­ly enhance our mech­a­nis­tic under­stand­ing of het­ero­ge­neous cat­alyt­ic sys­tems, in par­tic­u­lar the reduc­tion of CO2. Dr Szanyi is also involved in research relat­ed to the fun­da­men­tal under­stand­ing of auto­mo­tive emis­sion con­trol catal­y­sis, con­duct­ing research in selec­tive cat­alyt­ic reduc­tion of NOx on zeo­lite-based cat­a­lysts, low tem­per­a­ture NO and CO oxi­da­tion on met­al oxides, and low tem­per­a­tures NOx and HC stor­age in zeo­lites.

Design of complex metal/metal-oxide heterogeneous catalytic materials for energy and chemical conversion

2017 Spring Symposium

Eran­da Nikol­la, Depart­ment of Chem­i­cal Engi­neer­ing and Mate­ri­als Sci­ence, Wayne State Uni­ver­si­ty, Detroit, MI

Abstract — Dwin­dling fuel resources and high lev­els of CO2 emis­sions have increased the need for renew­able ener­gy resources and more effi­cient ener­gy con­ver­sion and stor­age sys­tems. In this talk, some of our recent work on design­ing effi­cient (active, selec­tive and sta­ble) cat­alyt­ic sys­tems for ener­gy and chem­i­cal con­ver­sions will be dis­cussed. First, I will talk about our work on design­ing lay­ered nick­e­late oxide elec­tro­cat­a­lysts for elec­tro­chem­i­cal oxy­gen reduc­tion and evo­lu­tion reac­tions. These process­es play an impor­tant role in fuel cells, elec­trolyz­ers and Li-air bat­ter­ies. We have uti­lized den­si­ty func­tion­al the­o­ry (DFT) cal­cu­la­tions to iden­ti­fy the fac­tors that gov­ern the activ­i­ty of nick­e­late oxides toward these process­es. Using a reverse microemul­sion approach we demon­strate an approach for syn­the­siz­ing nanos­truc­tured nick­e­late oxide elec­tro­cat­a­lysts with con­trolled sur­face struc­ture. These nanos­truc­tures are thor­ough­ly char­ac­ter­ized using atom­ic-res­o­lu­tion high angle annu­lar dark field (HAADF) imag­ing along with elec­tron ener­gy-loss spec­troscopy (EELS) per­formed using an aber­ra­tion cor­rect­ed scan­ning trans­mis­sion elec­tron micro­scope (STEM). Con­trolled kinet­ic iso­topic and elec­tro­chem­i­cal stud­ies are used to devel­op structure/performance rela­tion­ships to iden­ti­fy nick­e­late oxides with opti­mal elec­tro­cat­alyt­ic activ­i­ty. Sec­ond­ly, I will dis­cuss our efforts on design­ing effi­cient cat­alyt­ic sys­tems for bio­mass con­ver­sion process­es. Devel­op­ment of active and selec­tive cat­a­lysts for bio­mass con­ver­sion is crit­i­cal in real­iz­ing a renew­able plat­form for fuels and chem­i­cals. I will high­light some of our recent work on uti­liz­ing reducible met­al oxide encap­su­lat­ed noble met­al cat­alyt­ic mate­ri­als to pro­mote hydrodeoxy­gena­tion (HDO) of bio­mass-derived com­pounds. We show enhance­ment in HDO activ­i­ty and selec­tiv­i­ty due to the encap­su­la­tion of the met­al nanopar­ti­cles by an oxide film pro­vid­ing high inter­fa­cial con­tact between the met­al and met­al oxide sites, and restric­tive acces­si­ble con­for­ma­tions of aro­mat­ics on the met­al sur­face.

Biog­ra­phy — Eran­da Nikol­la is an assis­tant pro­fes­sor in the Depart­ment of Chem­i­cal Engi­neer­ing and Mate­ri­als Sci­ence at Wayne State Uni­ver­si­ty since Fall 2011. Her research inter­ests lie in the devel­op­ment of het­ero­ge­neous cat­a­lysts and elec­tro­cat­a­lysts for chem­i­cal con­ver­sion process­es and elec­tro­chem­i­cal sys­tems (i.e., fuel cells, elec­trolyz­ers) using a com­bi­na­tion of exper­i­men­tal and the­o­ret­i­cal tech­niques. Dr. Nikol­la received her Ph.D. in Chem­i­cal Engi­neer­ing from Uni­ver­si­ty of Michi­gan in 2009 work­ing with Prof. Suljo Lin­ic and Prof. Johannes Schwank in the area of sol­id-state elec­tro­catal­y­sis. She con­duct­ed a two-year post­doc­tor­al work at Cal­i­for­nia Insti­tute of Tech­nol­o­gy with Prof. Mark E. Davis pri­or to join­ing Wayne State Uni­ver­si­ty. At Cal­tech she devel­oped exper­tise in syn­the­sis and char­ac­ter­i­za­tion of meso/microporous mate­ri­als and func­tion­al­ized sur­faces. Dr. Nikol­la is the recip­i­ent of a num­ber of awards includ­ing the Nation­al Sci­ence Foun­da­tion CAREER Award, the Depart­ment of Ener­gy CAREER Award, 2016 Camille Drey­fus Teacher-Schol­ar Award and the Young Sci­en­tist Award from the Inter­na­tion­al Con­gress on Catal­y­sis.

Mechanisms and Materials for Alkaline Hydrogen Electrocatalysis

2017 Spring Symposium

Mau­reen Tang, Chem­i­cal and Bio­log­i­cal Engi­neer­ing, Drex­el Uni­ver­si­ty, Philadel­phia, PA

Abstract — Hydro­gen is a poten­tial low cost, scal­able ener­gy stor­age medi­um for renew­able elec­tric­i­ty gen­er­a­tion. More impor­tant­ly, study of the hydro­gen elec­trode reac­tions has led to the dis­cov­ery of many of the fun­da­men­tal con­cepts in elec­tro­chem­istry and elec­tro­catal­y­sis. It has long been rec­og­nized that the reac­tion rates of the hydro­gen oxi­da­tion and hydro­gen evo­lu­tion reac­tions (HOR and HER) are slow­er in basic than acidic elec­trolytes, even though the sur­face inter­me­di­ate of adsorbed hydro­gen is inde­pen­dent of solu­tion pH. Under­stand­ing the root of this obser­va­tion is crit­i­cal to design­ing cat­a­lysts for a mul­ti­tude of elec­tro­chem­i­cal reac­tions with rel­e­vance to ener­gy con­ver­sion and stor­age. In this work, we under­take both applied and fun­da­men­tal efforts to under­stand the mech­a­nisms and devel­op low-cost, active cat­a­lysts for the hydro­gen reac­tions in base.

In the first part of the talk, we uti­lize a the­o­ry-guid­ed approach to devel­op nick­el-sil­ver cat­a­lysts for alka­line hydro­gen evo­lu­tion and oxi­da­tion. Den­si­ty-func­tion­al-the­o­ry cal­cu­la­tions pre­dict these alloys will be active for hydro­gen evo­lu­tion and oxi­da­tion. To cir­cum­vent the ther­mo­dy­nam­ic insol­u­bil­i­ty of these two met­als and iso­late cat­alyt­ic activ­i­ty, we employ an uncom­mon phys­i­cal vapor code­po­si­tion syn­the­sis. Our mea­sure­ments show that the alloy is indeed more active for hydro­gen evo­lu­tion than pure nick­el. In the sec­ond part of the talk, we exam­ine specif­i­cal­ly the hypoth­e­sis that water ori­en­ta­tion gov­erns the rate of hydro­gen adsorp­tion and thus the over­all HER/HOR kinet­ics by mod­u­lat­ing the poten­tial of zero charge of oxide sup­ports in acid and base. Final­ly, we com­bine micro­ki­net­ic mod­el­ing and sin­gle-crys­tal mea­sure­ments to deter­mine if adsorbed hydrox­ide func­tions as an active inter­me­di­ate or spec­ta­tor in the reac­tion. The results of these stud­ies high­light the impor­tance of kinet­ic bar­ri­ers, as well as adsorp­tion ener­gies, and con­tribute to resolv­ing a long-stand­ing para­dox in elec­tro­catal­y­sis and sur­face sci­ence.

Biog­ra­phy — Mau­reen Tang joined the fac­ul­ty of Chem­i­cal and Bio­log­i­cal Engi­neer­ing at Drex­el Uni­ver­si­ty in Fall 2014. She received her B.S. in Chem­i­cal Engi­neer­ing from Carnegie Mel­lon Uni­ver­si­ty and her Ph. D. from the Uni­ver­si­ty of Cal­i­for­nia, Berke­ley. While at Berke­ley, she received a NSF Grad­u­ate Research Fel­low­ship, an NSF East Asia Pacif­ic Sum­mer Fel­low­ship, and the Daniel Cubi­ciot­ti Stu­dent Award of the Elec­tro­chem­i­cal Soci­ety. Dr. Tang has com­plet­ed post­doc­tor­al work at Stan­ford Uni­ver­si­ty and research intern­ships at Kyoto Uni­ver­si­ty, the Uni­ver­si­ty of Dort­mund, and Dupont. Her research at Drex­el devel­ops mate­ri­als, archi­tec­tures, and fun­da­men­tal insight for elec­tro­chem­i­cal ener­gy stor­age and con­ver­sion.

Zeolite Catalysis with a Focus on Downstream Refining Applications

2017 Spring Symposium

C.Y. Chen, Chevron Ener­gy Tech­nol­o­gy Com­pa­ny, Rich­mond, CA

Abstract — Zeo­lites have been impor­tant cat­a­lysts for the refin­ing and petro­chem­i­cal indus­tries and oth­er appli­ca­tions. The use of organo-cation tem­plate mol­e­cules to pro­vide struc­ture direc­tion has giv­en rise to a num­ber of nov­el zeo­lites in recent years, lead­ing to break­throughs in zeo­lite syn­the­sis and pro­vid­ing an impe­tus in devel­op­ing new process chem­istry. As a con­se­quence, the under­stand­ing of zeo­lite struc­tures and the struc­ture-prop­er­ty rela­tion­ships has become not only of basic aca­d­e­m­ic inter­est but also one of the most crit­i­cal tasks in bring­ing the indus­tri­al appli­ca­tions of these mate­ri­als to suc­cess­ful fruition.

In this paper I will first present a brief overview of Chevron’s zeo­lite R&D. Then the empha­sis will be placed on zeo­lite catal­y­sis for down­stream refin­ing appli­ca­tions such as hydro­c­rack­ing, hydroi­so­mer­iza­tion and MTO (methanol to olefins). Here the char­ac­ter­i­za­tion of zeo­lites via cat­alyt­ic test reac­tions and physisorp­tion plays an impor­tant role. The hydro­c­rack­ing and hydroi­so­mer­iza­tion of paraf­fins such as n-hexa­ne, n-decane and n-hexa­de­cane as well as MTO will be dis­cussed as exam­ples for the inves­ti­ga­tion of the cat­alyt­ic prop­er­ties of a series of zeo­lites (e.g., Y, mor­den­ite, fer­rierite, ZSM-5, ZSM-12, ZSM-22, ZSM-48, TNU-9, SSZ-25, SSZ-26, SSZ-32, SSZ-33, SSZ-56, SSZ-57, SSZ-75, SSZ-87 and SSZ-98) and some new exam­ples of shape selec­tiv­i­ties of zeo­lite catal­y­sis will be demon­strat­ed. Fur­ther­more, our stud­ies on the vapor phase physisorp­tion of a series of hydro­car­bon adsor­bates with vary­ing mol­e­cule sizes for a wide spec­trum of zeo­lite struc­tures will be report­ed. Cat­alyt­ic test reac­tions and vapor phase hydro­car­bon adsorp­tion togeth­er also pro­vide use­ful infor­ma­tion for the deter­mi­na­tion of zeo­lite struc­tures.

The author thanks Chevron Ener­gy Tech­nol­o­gy Com­pa­ny for sup­port of zeo­lite R&D, espe­cial­ly S.I. Zones, R.J. Sax­ton and G.L. Scheuer­man.

Biog­ra­phy — C.Y. Chen is a senior staff sci­en­tist and tech­ni­cal team leader in the Catal­y­sis Tech­nol­o­gy Depart­ment of Chevron Ener­gy Tech­nol­o­gy Com­pa­ny locat­ed in Rich­mond, Cal­i­for­nia. He is a zeo­lite sci­en­tist by train­ing and has been work­ing at Chevron for the past 22 years in zeo­lite research projects involv­ing syn­the­sis, mod­i­fi­ca­tion, char­ac­ter­i­za­tion, catal­y­sis, adsorp­tion and com­mer­cial­iza­tion. He received his Diplom in Chem­i­cal Engi­neer­ing from the Uni­ver­si­ty of Karl­sruhe, Ger­many and Ph.D. in Chem­istry from the Uni­ver­si­ty of Old­en­burg, Ger­many with Prof. Jens Weitkamp. Then he was a post­doc at Vir­ginia Tech and Cal­tech with Prof. Mark Davis. He is also an adjunct pro­fes­sor in the Depart­ment of Chem­i­cal Engi­neer­ing at the Uni­ver­si­ty of Cal­i­for­nia at Davis.

Synthesis of Zincosilicate Catalysts for the Oligomerization of Propylene

2017 Spring Symposium

Mark Deimund, Exxon­Mo­bil Research and Engi­neer­ing Com­pa­ny, Annan­dale, NJ

Abstract — Two zin­cosil­i­cate mol­e­c­u­lar sieves (CIT-6 and Zn-MCM-41) were syn­the­sized and ion-exchanged with nick­el, allow­ing them to act as cat­a­lysts for the oligomer­iza­tion of propy­lene into C3n prod­ucts (pri­mar­i­ly C6 and C9 species). For per­for­mance com­par­i­son to alu­mi­nosil­i­cate mate­ri­als, two zeo­lites (high-alu­minum beta and zeo­lite Y) were also nick­el exchanged and uti­lized in the oligomer­iza­tion reac­tion.

CIT-6 and the high-alu­minum zeo­lite beta (HiAl-BEA) both have the *BEA frame­work topol­o­gy, allow­ing for com­par­i­son between the zinc and alu­minum het­eroatoms when exchanged with nick­el, as the for­mer gives two frame­work charges per atom, while the lat­ter gives only one. Ni-CIT-6 and Ni-Zn-MCM-41 enable the com­par­i­son of a micro­p­orous and a meso­porous zin­cosil­i­cate. The Ni2+ ion exchanged onto zeo­lite Y has been pre­vi­ous­ly report­ed to oligomer­ize propy­lene and is used here for com­par­i­son.

Reac­tion data are obtained at 180°C and 250°C, atmos­pher­ic pres­sure, and a WHSV = 1.0 h-1 in a feed stream con­sist­ing of 85mol% propy­lene, with the bal­ance inert. At these con­di­tions, all cat­a­lysts are active for propy­lene oligomer­iza­tion, with steady-state con­ver­sions rang­ing from 3–16%. With the excep­tion of Ni-HiAl-BEA, all cat­a­lysts exhib­it high­er propy­lene con­ver­sions at 250°C than 180°C. Both *BEA topol­o­gy mate­ri­als exhib­it sim­i­lar propy­lene con­ver­sions at each tem­per­a­ture, but Ni-HiAl-BEA is not as selec­tive to C3n prod­ucts as Ni-CIT-6. Zin­cosil­i­cates demon­strate high­er aver­age selec­tiv­i­ties to C3n prod­ucts than the alu­mi­nosil­i­cates at both reac­tion tem­per­a­tures test­ed. Hex­ene prod­ucts oth­er than those expect­ed by sim­ple oligomer­iza­tion are also present, like­ly formed by dou­ble-bond iso­mer­iza­tion cat­alyzed at acid sites.

Addi­tion­al­ly, both of the alu­mi­nosil­i­cate mate­ri­als cat­alyzed crack­ing reac­tions, form­ing non-C3n prod­ucts. The reduced acid­i­ty of the zin­cosil­i­cates rel­a­tive to the alu­mi­nosil­i­cates like­ly accounts for the high­er C3n prod­uct selec­tiv­i­ty of the zin­cosil­i­cates. Zin­cosil­i­cates also exhib­it­ed high­er lin­ear-to-branched hex­ene iso­mer ratios when com­pared to the alu­mi­nosil­i­cates. The meso­porous zin­cosil­i­cate exhibits the best reac­tion behav­ior (includ­ing C3n prod­uct selec­tiv­i­ty: approx­i­mate­ly 99% at both tem­per­a­tures for Ni-Zn-MCM-41) of the cat­alyt­ic mate­ri­als test­ed here.

From Deimund, MA, et al. ACS Catal., 2014, 4 (11), pp 4189–4195. DOI: 10.1021/cs501313z

Biog­ra­phy — Orig­i­nal­ly from Okla­homa City, Okla­homa, Mark attend­ed Texas A&M Uni­ver­si­ty where he earned his under­grad­u­ate degree in chem­i­cal engi­neer­ing. He then attend­ed the Uni­ver­si­ty of Cam­bridge for his MPhil, con­duct­ing research into the for­ma­tion of pro­tein deposits in brain cells as a means to bet­ter under­stand the onset of Alzheimer’s and oth­er neu­rode­gen­er­a­tive dis­eases. Upon com­ple­tion of this degree, he began his PhD work at the Cal­i­for­nia Insti­tute of Tech­nol­o­gy in the area of mol­e­c­u­lar sieve syn­the­sis and reac­tion test­ing under Pro­fes­sor Mark E. Davis. Cur­rent­ly, he works as a researcher at Exxon­Mo­bil Research and Engi­neer­ing Com­pa­ny in Annan­dale, NJ.

Science and Technology of Framework Metal-Containing Molecular Sieves Catalysts

2017 Spring Symposium

Las­z­lo Nemeth, Depart­ment of Chem­istry and Bio­chem­istry, Uni­ver­si­ty of Neva­da Las Vegas

Abstract — Since the dis­cov­ery of tita­ni­um sil­i­calite (TS-1) more than 30 years ago frame­work met­al-con­tain­ing mol­e­c­u­lar sieves have become an impor­tant class of cat­a­lyst, find­ing appli­ca­tion in sev­er­al indus­tri­al process­es. Incor­po­ra­tion of tita­ni­um, gal­li­um, iron, tin and oth­er ele­ments into mol­e­c­u­lar sieves frame­works has led to both sci­en­tif­ic progress and engi­neer­ing inno­va­tions in catal­y­sis. As a result of these devel­op­ments, frame­work met­al-con­tain­ing zeo­lites have been imple­ment­ed in the pre­ced­ing decade in new com­mer­cial, byprod­uct-free green process­es, which have improved sus­tain­abil­i­ty in the chem­i­cal indus­try. Based on a com­pre­hen­sive analy­sis of the recent lit­er­a­ture includ­ing patents, this review is a sum­ma­ry of the cur­rent knowl­edge of the sci­ence and tech­nol­o­gy of frame­work met­al-con­tain­ing mol­e­c­u­lar sieves. The syn­the­sis of these mate­ri­als is sum­ma­rized, fol­lowed by an account of state-of-the-art char­ac­ter­i­za­tion meth­ods. The key cat­alyt­ic chemistries, which can be clas­si­fied into oxi­da­tion reac­tions such as olefin epox­i­da­tion, aro­mat­ic hydrox­y­la­tion and ammox­i­ma­tion, and Lewis acid-cat­alyzed reac­tions, are dis­cussed. Mech­a­nisms pro­posed for these trans­for­ma­tions are reviewed, togeth­er with the the­o­ret­i­cal and mod­el­ing tools applied in this con­text. An overview of the com­mer­cial tech­nolo­gies asso­ci­at­ed with the use of frame­work met­al-con­tain­ing mol­e­c­u­lar sieves ( Tita­ni­um and Gal­li­um Mol­e­c­u­lar sieves) mate­ri­als will be pre­sent­ed. The paper will be dis­cuss the cur­rent activ­i­ty on frame­work Tin Beta Zeo­lite, which shown unique “Zeoen­zyme” selec­tiv­i­ties in mul­ti­ple appli­ca­tions. Some new chem­istry using Sn-zeo­lites will be pre­sent­ed also to pro­duce new prod­uct from bio­mass.

Biog­ra­phy — Las­z­lo Nemeth earned a Bachelor’s Degree in Chem­istry and Doc­tor of Sci­ence in chem­i­cal engi­neer­ing from Uni­ver­si­ty of Debre­cen, Hun­gary.

Upon grad­u­a­tion he was assis­tant pro­fes­sor in Depart­ment of Chem­i­cal Tech­nol­o­gy at same Uni­ver­si­ty and lat­er scientist/ man­ag­er at Hun­gar­i­an High Pres­sure Insti­tute, Hun­gary.

UOP invit­ed him to join to Cor­po­rate Research in Des Plaines, IL, He worked for UOP LLC a Hon­ey­well Com­pa­ny 23 years as senior research asso­ciate, with joint appoint­ment as an adjunct pro­fes­sor at Chem­i­cal Engi­neer­ing Depart­ment of Uni­ver­si­ty of Illi­nois at Chica­go.

Dur­ing his research career at UOP he was prin­ci­pal inves­ti­ga­tor of mul­ti­ple suc­cess­ful projects in the area of mate­r­i­al sci­ence, adsorp­tion and catal­y­sis. His exper­tise also includes zeo­lite appli­ca­tion for UOP’s cat­alyt­ic process­es, met­al-zeo­lites, sol­id and liq­uid superacids, hydro­gen per­ox­ide syn­the­sis and new appli­ca­tions.

Las­z­lo joined the Chem­istry and Bio­chem­istry Depart­ment of Uni­ver­si­ty of Neva­da Las Vegas in 2015 as a research pro­fes­sor. Cur­rent­ly he is work­ing on bimetal­lic-zeo­lite syn­the­sis and appli­ca­tions, Lithi­um Ion Bat­tery recir­cu­la­tion, and devel­op new Ther­mochromic nano­ma­te­ri­als.

He spent his sab­bat­i­cal with George Olah (Nobel Lau­re­ate) and Aveli­no Cor­ma (ITQ Spain).

Dr. Nemeth was award­ed with Stein Star award and Honeywell’s excel­lence in Inno­va­tion. He pub­lished 50+ papers and 90+ patents.