Design of complex metal/metal-oxide heterogeneous catalytic materials for energy and chemical conversion

2017 Spring Symposium

Eranda Nikolla, Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI

Abstract – Dwindling fuel resources and high levels of CO2 emissions have increased the need for renewable energy resources and more efficient energy conversion and storage systems. In this talk, some of our recent work on designing efficient (active, selective and stable) catalytic systems for energy and chemical conversions will be discussed. First, I will talk about our work on designing layered nickelate oxide electrocatalysts for electrochemical oxygen reduction and evolution reactions. These processes play an important role in fuel cells, electrolyzers and Li-air batteries. We have utilized density functional theory (DFT) calculations to identify the factors that govern the activity of nickelate oxides toward these processes. Using a reverse microemulsion approach we demonstrate an approach for synthesizing nanostructured nickelate oxide electrocatalysts with controlled surface structure. These nanostructures are thoroughly characterized using atomic-resolution high angle annular dark field (HAADF) imaging along with electron energy-loss spectroscopy (EELS) performed using an aberration corrected scanning transmission electron microscope (STEM). Controlled kinetic isotopic and electrochemical studies are used to develop structure/performance relationships to identify nickelate oxides with optimal electrocatalytic activity. Secondly, I will discuss our efforts on designing efficient catalytic systems for biomass conversion processes. Development of active and selective catalysts for biomass conversion is critical in realizing a renewable platform for fuels and chemicals. I will highlight some of our recent work on utilizing reducible metal oxide encapsulated noble metal catalytic materials to promote hydrodeoxygenation (HDO) of biomass-derived compounds. We show enhancement in HDO activity and selectivity due to the encapsulation of the metal nanoparticles by an oxide film providing high interfacial contact between the metal and metal oxide sites, and restrictive accessible conformations of aromatics on the metal surface.

Biography – Eranda Nikolla is an assistant professor in the Department of Chemical Engineering and Materials Science at Wayne State University since Fall 2011. Her research interests lie in the development of heterogeneous catalysts and electrocatalysts for chemical conversion processes and electrochemical systems (i.e., fuel cells, electrolyzers) using a combination of experimental and theoretical techniques. Dr. Nikolla received her Ph.D. in Chemical Engineering from University of Michigan in 2009 working with Prof. Suljo Linic and Prof. Johannes Schwank in the area of solid-state electrocatalysis. She conducted a two-year postdoctoral work at California Institute of Technology with Prof. Mark E. Davis prior to joining Wayne State University. At Caltech she developed expertise in synthesis and characterization of meso/microporous materials and functionalized surfaces. Dr. Nikolla is the recipient of a number of awards including the National Science Foundation CAREER Award, the Department of Energy CAREER Award, 2016 Camille Dreyfus Teacher-Scholar Award and the Young Scientist Award from the International Congress on Catalysis.

Mechanisms and Materials for Alkaline Hydrogen Electrocatalysis

2017 Spring Symposium

Maureen Tang, Chemical and Biological Engineering, Drexel University, Philadelphia, PA

Abstract – Hydrogen is a potential low cost, scalable energy storage medium for renewable electricity generation. More importantly, study of the hydrogen electrode reactions has led to the discovery of many of the fundamental concepts in electrochemistry and electrocatalysis. It has long been recognized that the reaction rates of the hydrogen oxidation and hydrogen evolution reactions (HOR and HER) are slower in basic than acidic electrolytes, even though the surface intermediate of adsorbed hydrogen is independent of solution pH. Understanding the root of this observation is critical to designing catalysts for a multitude of electrochemical reactions with relevance to energy conversion and storage. In this work, we undertake both applied and fundamental efforts to understand the mechanisms and develop low-cost, active catalysts for the hydrogen reactions in base.

In the first part of the talk, we utilize a theory-guided approach to develop nickel-silver catalysts for alkaline hydrogen evolution and oxidation. Density-functional-theory calculations predict these alloys will be active for hydrogen evolution and oxidation. To circumvent the thermodynamic insolubility of these two metals and isolate catalytic activity, we employ an uncommon physical vapor codeposition synthesis. Our measurements show that the alloy is indeed more active for hydrogen evolution than pure nickel. In the second part of the talk, we examine specifically the hypothesis that water orientation governs the rate of hydrogen adsorption and thus the overall HER/HOR kinetics by modulating the potential of zero charge of oxide supports in acid and base. Finally, we combine microkinetic modeling and single-crystal measurements to determine if adsorbed hydroxide functions as an active intermediate or spectator in the reaction. The results of these studies highlight the importance of kinetic barriers, as well as adsorption energies, and contribute to resolving a long-standing paradox in electrocatalysis and surface science.

Biography – Maureen Tang joined the faculty of Chemical and Biological Engineering at Drexel University in Fall 2014. She received her B.S. in Chemical Engineering from Carnegie Mellon University and her Ph. D. from the University of California, Berkeley. While at Berkeley, she received a NSF Graduate Research Fellowship, an NSF East Asia Pacific Summer Fellowship, and the Daniel Cubiciotti Student Award of the Electrochemical Society. Dr. Tang has completed postdoctoral work at Stanford University and research internships at Kyoto University, the University of Dortmund, and Dupont. Her research at Drexel develops materials, architectures, and fundamental insight for electrochemical energy storage and conversion.

Zeolite Catalysis with a Focus on Downstream Refining Applications

2017 Spring Symposium

C.Y. Chen, Chevron Energy Technology Company, Richmond, CA

Abstract – Zeolites have been important catalysts for the refining and petrochemical industries and other applications. The use of organo-cation template molecules to provide structure direction has given rise to a number of novel zeolites in recent years, leading to breakthroughs in zeolite synthesis and providing an impetus in developing new process chemistry. As a consequence, the understanding of zeolite structures and the structure-property relationships has become not only of basic academic interest but also one of the most critical tasks in bringing the industrial applications of these materials to successful fruition.

In this paper I will first present a brief overview of Chevron’s zeolite R&D. Then the emphasis will be placed on zeolite catalysis for downstream refining applications such as hydrocracking, hydroisomerization and MTO (methanol to olefins). Here the characterization of zeolites via catalytic test reactions and physisorption plays an important role. The hydrocracking and hydroisomerization of paraffins such as n-hexane, n-decane and n-hexadecane as well as MTO will be discussed as examples for the investigation of the catalytic properties of a series of zeolites (e.g., Y, mordenite, ferrierite, ZSM-5, ZSM-12, ZSM-22, ZSM-48, TNU-9, SSZ-25, SSZ-26, SSZ-32, SSZ-33, SSZ-56, SSZ-57, SSZ-75, SSZ-87 and SSZ-98) and some new examples of shape selectivities of zeolite catalysis will be demonstrated. Furthermore, our studies on the vapor phase physisorption of a series of hydrocarbon adsorbates with varying molecule sizes for a wide spectrum of zeolite structures will be reported. Catalytic test reactions and vapor phase hydrocarbon adsorption together also provide useful information for the determination of zeolite structures.

The author thanks Chevron Energy Technology Company for support of zeolite R&D, especially S.I. Zones, R.J. Saxton and G.L. Scheuerman.

Biography – C.Y. Chen is a senior staff scientist and technical team leader in the Catalysis Technology Department of Chevron Energy Technology Company located in Richmond, California. He is a zeolite scientist by training and has been working at Chevron for the past 22 years in zeolite research projects involving synthesis, modification, characterization, catalysis, adsorption and commercialization. He received his Diplom in Chemical Engineering from the University of Karlsruhe, Germany and Ph.D. in Chemistry from the University of Oldenburg, Germany with Prof. Jens Weitkamp. Then he was a postdoc at Virginia Tech and Caltech with Prof. Mark Davis. He is also an adjunct professor in the Department of Chemical Engineering at the University of California at Davis.

Synthesis of Zincosilicate Catalysts for the Oligomerization of Propylene

2017 Spring Symposium

Mark Deimund, ExxonMobil Research and Engineering Company, Annandale, NJ

Abstract – Two zincosilicate molecular sieves (CIT-6 and Zn-MCM-41) were synthesized and ion-exchanged with nickel, allowing them to act as catalysts for the oligomerization of propylene into C3n products (primarily C6 and C9 species). For performance comparison to aluminosilicate materials, two zeolites (high-aluminum beta and zeolite Y) were also nickel exchanged and utilized in the oligomerization reaction.

CIT-6 and the high-aluminum zeolite beta (HiAl-BEA) both have the *BEA framework topology, allowing for comparison between the zinc and aluminum heteroatoms when exchanged with nickel, as the former gives two framework charges per atom, while the latter gives only one. Ni-CIT-6 and Ni-Zn-MCM-41 enable the comparison of a microporous and a mesoporous zincosilicate. The Ni2+ ion exchanged onto zeolite Y has been previously reported to oligomerize propylene and is used here for comparison.

Reaction data are obtained at 180°C and 250°C, atmospheric pressure, and a WHSV = 1.0 h-1 in a feed stream consisting of 85mol% propylene, with the balance inert. At these conditions, all catalysts are active for propylene oligomerization, with steady-state conversions ranging from 3-16%. With the exception of Ni-HiAl-BEA, all catalysts exhibit higher propylene conversions at 250°C than 180°C. Both *BEA topology materials exhibit similar propylene conversions at each temperature, but Ni-HiAl-BEA is not as selective to C3n products as Ni-CIT-6. Zincosilicates demonstrate higher average selectivities to C3n products than the aluminosilicates at both reaction temperatures tested. Hexene products other than those expected by simple oligomerization are also present, likely formed by double-bond isomerization catalyzed at acid sites.

Additionally, both of the aluminosilicate materials catalyzed cracking reactions, forming non-C3n products. The reduced acidity of the zincosilicates relative to the aluminosilicates likely accounts for the higher C3n product selectivity of the zincosilicates. Zincosilicates also exhibited higher linear-to-branched hexene isomer ratios when compared to the aluminosilicates. The mesoporous zincosilicate exhibits the best reaction behavior (including C3n product selectivity: approximately 99% at both temperatures for Ni-Zn-MCM-41) of the catalytic materials tested here.

From Deimund, MA, et al. ACS Catal., 2014, 4 (11), pp 4189–4195. DOI: 10.1021/cs501313z

Biography – Originally from Oklahoma City, Oklahoma, Mark attended Texas A&M University where he earned his undergraduate degree in chemical engineering. He then attended the University of Cambridge for his MPhil, conducting research into the formation of protein deposits in brain cells as a means to better understand the onset of Alzheimer’s and other neurodegenerative diseases. Upon completion of this degree, he began his PhD work at the California Institute of Technology in the area of molecular sieve synthesis and reaction testing under Professor Mark E. Davis. Currently, he works as a researcher at ExxonMobil Research and Engineering Company in Annandale, NJ.

Science and Technology of Framework Metal-Containing Molecular Sieves Catalysts

2017 Spring Symposium

Laszlo Nemeth, Department of Chemistry and Biochemistry, University of Nevada Las Vegas

Abstract – Since the discovery of titanium silicalite (TS-1) more than 30 years ago framework metal-containing molecular sieves have become an important class of catalyst, finding application in several industrial processes. Incorporation of titanium, gallium, iron, tin and other elements into molecular sieves frameworks has led to both scientific progress and engineering innovations in catalysis. As a result of these developments, framework metal-containing zeolites have been implemented in the preceding decade in new commercial, byproduct-free green processes, which have improved sustainability in the chemical industry. Based on a comprehensive analysis of the recent literature including patents, this review is a summary of the current knowledge of the science and technology of framework metal-containing molecular sieves. The synthesis of these materials is summarized, followed by an account of state-of-the-art characterization methods. The key catalytic chemistries, which can be classified into oxidation reactions such as olefin epoxidation, aromatic hydroxylation and ammoximation, and Lewis acid-catalyzed reactions, are discussed. Mechanisms proposed for these transformations are reviewed, together with the theoretical and modeling tools applied in this context. An overview of the commercial technologies associated with the use of framework metal-containing molecular sieves ( Titanium and Gallium Molecular sieves) materials will be presented. The paper will be discuss the current activity on framework Tin Beta Zeolite, which shown unique “Zeoenzyme” selectivities in multiple applications. Some new chemistry using Sn-zeolites will be presented also to produce new product from biomass.

Biography – Laszlo Nemeth earned a Bachelor’s Degree in Chemistry and Doctor of Science in chemical engineering from University of Debrecen, Hungary.

Upon graduation he was assistant professor in Department of Chemical Technology at same University and later scientist/ manager at Hungarian High Pressure Institute, Hungary.

UOP invited him to join to Corporate Research in Des Plaines, IL, He worked for UOP LLC a Honeywell Company 23 years as senior research associate, with joint appointment as an adjunct professor at Chemical Engineering Department of University of Illinois at Chicago.

During his research career at UOP he was principal investigator of multiple successful projects in the area of material science, adsorption and catalysis. His expertise also includes zeolite application for UOP’s catalytic processes, metal-zeolites, solid and liquid superacids, hydrogen peroxide synthesis and new applications.

Laszlo joined the Chemistry and Biochemistry Department of University of Nevada Las Vegas in 2015 as a research professor. Currently he is working on bimetallic-zeolite synthesis and applications, Lithium Ion Battery recirculation, and develop new Thermochromic nanomaterials.

He spent his sabbatical with George Olah (Nobel Laureate) and Avelino Corma (ITQ Spain).

Dr. Nemeth was awarded with Stein Star award and Honeywell’s excellence in Innovation. He published 50+ papers and 90+ patents.

Emerging Challenges in Catalysis for Sustainable Production of Transport Fuels: An Industrial View

2017 Spring Symposium

John Shabaker, BP Group Research, Naperville, IL

Abstract – Primary energy demand has grown tremendously over the past century, and despite the recent economic downturn, it is predicted to increase another 37% over the period from 2013-20351. Driven by global population growth and rising standards of living, this rapid increase in demand has driven innovation in the development of new energy supplies and highlighted environmental impacts of energy production & consumption. In this seminar, we will explore how these broad changes have in turn affected the transportation fuels sector, greatly influencing the price and availability of feedstocks, as well as the desired mix and quality of products. We will focus on the technological challenges arising for today’s transport fuels industry, and provide commentary on the role of catalysis research to help address them.

1 BP Energy Outlook 2035 (2017)

Biography – John is currently Technology Strategist in BP Group Research, where he provides technical input into strategic initiatives across the company.  Formerly, he was US Science Team Leader in the BP Center of Excellence for Applied Chemistry & Physics, also part of Group Research that supports businesses in refining, petrochemicals, lubricants, and upstream production, as well as manages global university programs. From 2007-2011 John led the implementation of new biofuels pathways in Refining Technology, ranging from biobutanol process development to renewable diesel co-processing in refinery hydrotreaters.   He was also active in conventional hydroprocessing technology, including pilot plant operations and modelling.

Prior to joining BP, John was a reaction engineering specialist at Bristol-Myers Squibb, applying in-situ spectroscopy, kinetics, and safety studies to pharmaceutical process development.  He received his PhD in chemical engineering in 2004 from the University of Wisconsin-Madison.  He holds bachelor degrees in chemical engineering and chemistry from Lehigh University.

Solid Catalysts Design: From Fundamental Knowledge To Catalytic Application

Meeting Program – April 2017

Professor Avelino Corma
Professor Avelino Corma
Professor and founder of the Instituto de Tecnología Química (UPV-CSIC)
Valencia, Spain


Abstract – The key point in catalysis is to define and synthesize the specific active site that will minimize the activation energy of the reaction, while forming selectively the desired product.

In the case of homogeneous catalysis, highly selective molecular catalysts can be designed and/or optimized from the fundamental knowledge accumulated on chemical reactivity, and the possibilities offered by molecular modelling, in situ or operando spectroscopy, kinetics and advanced catalyst synthesis. Then, when the catalytically active centers are defined, and their interaction with reactants and products can be rationalized, it could, in principle, be possible to predict and prepare more active and selective catalysts. In the case of solid catalysts it becomes more difficult to define and specifically build the active sites due to surface heterogeneities present in most of the solids. Indeed, one should consider that the presence of non-controllable surface defects and the fact that surface reconstruction may occur during the catalytic reaction, makes the identification and synthesis of the active sites in solid catalysts a big challenge.

From the point of view of maximizing active sites, and since catalysis with solids is a surface phenomenon, high surface solid catalysts are most of the times preferred. In this case it is not a simple task to identify the assembly of atoms, and therefore to establish the enthalpy and entropy effects at the interface of the solid-gas or solid-liquid, that will be responsible for the catalytic effect at the molecular level. Moreover, even when the above is achieved, to synthesize the solids with well defined, homogeneous single or multiple catalytically active sites it is a difficult task. Notice that reaction selectivity will depend on the capacity to prepare the solid avoiding the presence of sites other than the desired ones.

It was our objective, since the first moment, to design and synthesize solid catalysts in where we could build within the structure (almost like in a lego), on the bases of the knowledge developed on reaction mechanisms, adsorption interactions and materials synthesis procedures, the potential catalytic active sites. We expected that, if successful, this could be one way to achieve solid catalysts with well defined, uniform single or multiple active sites. It also appeared to us that working in that way it should be possible to build bridges between the homogeneous and heterogeneous catalysis. We are aware that in the case of the solid catalysts would not be possible to achieve the fine tuning of electronic, geometric and chiral effects obtained by means of the ligands and molecular structure, with transition metal complexes, and organic molecules in homogeneous catalysis. Nevertheless, we attempted to use the surface topology, textural characteristics and chemical composition of the solid to master molecular diffusion and adsorption of reactants, while selecting one among the different possible transition states.

We will present what has been our evolution on the design of three types of solid catalysts in where we followed the methodology describe above. They are:

  1. High surface area hybrid organic-inorganic catalysts in where we attempt to regulate the characteristics of the active sites and the geometrical flexibility to maximize dispersion forces.
  2. Fully inorganic highly thermically stable micro and mesoporous materials with well defined single sites, while controlling molecular diffusion and adsorption to achieve remarkable selectivity effects.
  3. Generating and stabilizing from single metal atoms to clusters with a few atoms to nanoparticles, with reactivities so high that remind those of enzimes.

We will show that by following the methodology: “understanding for designing and synthesizing”, we could also achieve what it is always a desirable objective in catalysis: “Designing for industrial application”.

Biography – Avelino Corma, Professor and founder of the Instituto de Tecnología Química (CSIC-UPV) in Valencia (Spain), he has been carrying out research in heterogeneous catalysis in academia and in collaboration with companies for nearly 35 years. He has worked on fundamental aspects of acid-base and redox catalysis with the aim of understanding the nature of the active sites, and reaction mechanisms. With these bases has developed catalysts that are being used commercially in several industrial processes. He is an internationally recognized expert in solid acid and bifunctional catalysts for oil refining, petrochemistry and chemical process, especially in the synthesis and application of zeolite catalysts. He has published more than 900 research papers, and inventor on more than 130 patents. Corma earned his BS in Chemistry at Valencia University, PhD at Madrid under direction of Prof. Antonio Cortes, and spent two years postdoc at Queen ́s University. He has received the Dupont Award on “Materials Science”, Ciapetta and Houdry Awards of the North American Catalysis Society, the F. Gault Award of the European Catalysis Society, the M. Boudart Award on Catalysis by the North American and European Catalysis Societies, the G. J. Somorjai ACS Award on Creative Catalysis, the Breck Award of the International Zeolite Association, the National Award of Science and technology of Spain, “Rey Jaume I” Prize for New Technologies (2000), the ENI
Award on Hydrocarbon Chemistry, the Royal Society of Chemistry Centenary Prize, Solvay Pierre-Gilles de Gennes Prize for Science and Industry and Gold Medal for the Chemistry Research Career 2001-2010 in Spain, La Grande Médaille de l’Académie des sciences de France 2011 and Honour Medal to the Invention from the Fundación García Cabrerizo in Spain. Gold Medal Foro QUÍMICA y SOCIEDAD to all his research career, Gran Medaille of the Science French Academy, Edith Flanigen Lectureship, Eastman Lecture, Director ́s Distinguished Lecture Series Pacific Northwest National Laboratory ́s. Prince of Asturias Award for Science & Technology 2014, 48th W. N. Lacey Lectureship in Chemical Engineering-Caltech (2015) and The Jacobus van ‘t Hoff Lecture 2015 at TU Delft Process Technology Institute (2015), The Hoyt C. Hottel Lecturer in Chemical Engineering at MIT Chemical Engineering Department (2015), J.T. Donald Lecture series 2015-2016 at McGill University, Spiers Memorial Award RSC (2016), IZA Award of the International Zeolite Association (2016), George C.A. Schuit Award lecture at the University of Delaware (2016).

“Doctor Honoris Causa” by Utrecht University (2006), UNED (2008), München Technological University (2008), Universidad Jaime I de Castellón (2008), Universidad de Valencia (2009), Bochüm University (2010), Universidad de Alicante (2010), Ottawa University (2012) Delft Technological University (2013) Jilin University (China) (2013), University of Bucarest (2014), Jaen (2016), Cantabria (2016).