Engineering Molecular Transformations over Supported Metal Catalysts for the Sustainable Conversion of Biomass-Derived Intermediates to Chemicals and Fuels

Meeting Program — October 2015

 
Matt Neurock
Matt Neu­rock
Shell Pro­fes­sor of Chem­i­cal Engi­neer­ing and Mate­ri­als Sci­ence
Uni­ver­si­ty of Min­neso­ta

 
 
 
 
 
 
 
 
Abstract — Future strate­gies for ener­gy pro­duc­tion will undoubt­ed­ly require process­es and mate­ri­als that can effi­cient­ly con­vert sus­tain­able resources such as bio­mass into fuels and chem­i­cals. While nature’s enzymes ele­gant­ly inte­grate high­ly active cen­ters togeth­er with adap­tive nanoscale envi­ron­ments to con­trol the cat­alyt­ic trans­for­ma­tion of mol­e­cules to spe­cif­ic prod­ucts, they are dif­fi­cult to incor­po­rate into large scale indus­tri­al process­es and lim­it­ed in terms of their sta­bil­i­ty. The design of more robust het­ero­ge­neous cat­alyt­ic mate­ri­als that can mim­ic enzyme behav­ior, how­ev­er, has been hin­dered by our lim­it­ed under­stand­ing of how such mol­e­c­u­lar trans­for­ma­tions pro­ceed over inor­gan­ic mate­ri­als. The tremen­dous advances in ab ini­tio the­o­ret­i­cal meth­ods, mol­e­c­u­lar sim­u­la­tions and high per­for­mance com­put­ing that have occurred over the past two decades pro­vide unprece­dent­ed abil­i­ty to track these trans­for­ma­tions and how they pro­ceed at spe­cif­ic sites and with­in par­tic­u­lar envi­ron­ments. This infor­ma­tion togeth­er with the unique abil­i­ties to fol­low such trans­for­ma­tions spec­tro­scop­i­cal­ly is enabling the design of unique atom­ic sur­face ensem­bles and nanoscale reac­tion envi­ron­ment that can effi­cient­ly cat­alyze spe­cif­ic mol­e­c­u­lar trans­for­ma­tions. This talk dis­cuss­es recent advances in com­pu­ta­tion­al catal­y­sis and their appli­ca­tion to engi­neer­ing mol­e­c­u­lar trans­for­ma­tions for the con­ver­sion of bio­mass into chem­i­cals and fuels. We will dis­cuss the active sites, mech­a­nisms and nanoscale reac­tion envi­ron­ments involved in spe­cif­ic bond mak­ing and break­ing reac­tions impor­tant in the con­ver­sion of bio­mass-derived inter­me­di­ates into chem­i­cals and fuels and the design of 3D envi­ron­ments nec­es­sary to car­ry out such trans­for­ma­tions.
 
Biog­ra­phy — Matt Neu­rock is the Shell Pro­fes­sor of Chem­i­cal Engi­neer­ing and Mate­ri­als Sci­ence at the Uni­ver­si­ty of Min­neso­ta. He received his B.S. degree in Chem­i­cal Engi­neer­ing from Michi­gan State Uni­ver­si­ty and his Ph.D. from the Uni­ver­si­ty of Delaware in 1992. He worked as a Post­doc­tor­al Fel­low at the Eind­hoven Uni­ver­si­ty of Tech­nol­o­gy in the Nether­lands from 1992–1993 and sub­se­quent­ly as Vis­it­ing Sci­en­tist in the Cor­po­rate Catal­y­sis Cen­ter at DuPont from 1993–1994. He joined the fac­ul­ty in Chem­i­cal Engi­neer­ing at the Uni­ver­si­ty of Vir­ginia in 1995 where he held joint appoint­ments in Chem­i­cal Engi­neer­ing and Chem­istry. In 2014 he moved to the Uni­ver­si­ty of Min­neso­ta and is cur­rent­ly on the fac­ul­ty in Chem­i­cal Engi­neer­ing and Mate­ri­als Sci­ence. He has made sem­i­nal advances to devel­op­ment and appli­ca­tion of com­pu­ta­tion­al meth­ods toward under­stand­ing cat­alyt­ic and elec­tro­cat­alyt­ic reac­tion mech­a­nisms, and the sites and envi­ron­ments that car­ry out reac­tions under work­ing con­di­tions. He has received var­i­ous awards for his research in com­pu­ta­tion­al catal­y­sis and mol­e­c­u­lar reac­tion engi­neer­ing includ­ing the Robert Bur­well Lec­ture­ship from the North Amer­i­can Catal­y­sis Soci­ety, R.H. Wil­helm Award in Chem­i­cal Reac­tion Engi­neer­ing from the Amer­i­can Insti­tute of Chem­i­cal Engi­neers, Paul H. Emmett Award in Fun­da­men­tal Catal­y­sis from the North Amer­i­can Catal­y­sis Soci­ety, Dis­tin­guished Vis­it­ing Pro­fes­sor of Uni­ver­si­ty of Mont­pel­li­er, East­man Chem­i­cal Lec­tur­er at the Uni­ver­si­ty of Cal­i­for­nia Berke­ley, Richard S. H. Mah Lec­tur­er at North­west­ern Uni­ver­si­ty, Johansen-Cros­by Lec­tur­er at Michi­gan State Uni­ver­si­ty, NSF Career Devel­op­ment Award, DuPont Young Inves­ti­ga­tor Award, Ford Young Fac­ul­ty Award. He has co-authored over 240 papers, two patents and two books. He is an edi­tor for the Jour­nal of Catal­y­sis and serves on numer­ous oth­er edi­to­r­i­al and advi­so­ry boards.