Zn Mod­i­fi­ca­tion of Pt(111) for the Hydrodeoxy­gena­tion of Aldoses

2014 Spring Symposium

Jesse R. McManus, Eddie Martono, & John M. Vohs
University of Pennsylvania
Abstract – The high oxygen content and multiple functional groups in biomass-derived platform molecules like glucose pose an interesting reaction engineering challenge for the conversion of biomass to value-added fuels and chemicals. The key to understanding the reaction pathways necessary for these conversions lies in elucidating reaction active sites on catalytically relevant surfaces and identifying the role of each functionality exhibited by the feed molecule in the reaction mechanism. In this study, temperature programmed desorption (TPD) and high resolution electron energy loss (HREEL) spectroscopy are utilized to probe the reaction pathway of the biomass-relevant glucose molecule, as well as model aldoses glyceraldehyde and glycolaldehyde, and simple aldehyde acetaldehyde on a Pt catalyst surface. The effects of modification of the Pt(111) surface with oxyphilic Zn adatoms are explored with regard to hydrodeoxygenation chemistry, and reaction mechanisms are proposed. With all molecules studied, it was found that Zn addition to Pt(111) resulted in an increase in the barrier for C-H and C-C scission, as well as notable activity for deoxygenation at the aldehyde oxygen as a function of polyalcohol content. These results help elucidate the role of multiple alcohol functionalities in biomass-derived oxygenates and highlight the potential of using alloy effects to modify catalytic chemistry.
Jess_R_McManusBiography – Dr. Jesse R. McManus recently completed his PhD research in Chemical Engineering at the University of Pennsylvania under the tutelage of Prof. John M. Vohs, successfully defending his thesis “Reaction Characterization of Biomass-Derived Oxygenates on Noble Metal Catalysts”. In 2009, he received his BSE in Chemical Engineering at Tulane University, graduating Summa Cum Laude with an Honors distinction. During his studies, Dr. McManus has received several awards for his academic accomplishments, including the Tulane-Richards Scholarship for Academic Excellence, The R.C. Reed Scholar Award for academic achievement and promise for the future, and the Doctoral Franklin Scholar Award for students with high promise to succeed in creative research at the cutting edge of their discipline. In the spring, Dr. McManus plans to depart from academic research and pursue a career in the energy sector with a major energy company.

Alkene Metathe­sis for Propy­lene Pro­duc­tion over W-based Cat­a­lysts: Insights from Multi-Functional Cat­a­lysts and Met­al­la­cy­clobu­tanes

2014 Spring Symposium

Christopher P. Nicholas

Abstract – Tungsten oxide supported on silica is an efficient catalyst for olefin metathesis used in industrial processes since the 1960s. Several elements point to isolated metal centers as the active sites, and from the Chauvin mechanism, it is reasonable to expect that carbene species are involved, possibly bearing an oxide ligand in the metal’s ligand sphere. Owing to the strategic importance of olefins as building blocks for the world chemical industry, development of efficient processes is of utmost relevance. More specifically, tailored heterogeneous catalysts with known structure–activity relationships may improve lifetimes and have higher numbers of active sites.

With our collaborators, we have been studying tungsten hydride supported on alumina prepared by the surface organometallic chemistry method as an active precursor for metathesis processes at low temperature and pressure. Taoufik, et.al. showed that ethylene can be converted to propylene at very high selectivities of 99% via a tri-functional mechanism involving dimerization, isomerization and cross-metathesis of ethylene and the produced 2-butene. Recently, via a contact time study we revealed that the dimerization of ethylene to 1-butene is the primary and also the rate limiting step in this reaction and results in deactivation of the catalyst due to a side reaction like olefin polymerization producing carbonaceous deposits on the catalyst.

With that knowledge, we have also investigated performance of the catalyst in the presence of ethylene and butenes. At low temperature (120 °C) in the cross-metathesis of ethylene and 2-butene, the catalyst deactivates notably with time on stream. However, at 150 °C, the catalyst was stable with time and thereby gave a high productivity in propylene. The ratio of ethylene to trans-2-butene was also studied, and the W-H/Al2O3 catalyst is stable and highly selective to propylene even at sub-stoichiometric ethylene ratios.

Surprisingly, we have also been able to obtain propylene in high yields from butene only feeds. 1-butene and 2-butene are both able to be converted into propylene at higher selectivity than expected due to isomerization and metathesis occurring simultaneously. Then, by studying isobutene / 2-butene cross-metathesis, we observed that the catalytic cycle involving the less sterically hindered tungstacyclobutane intermediate governs the conversion rate of the cross-metathesis reaction for propylene production from butenes and/or ethylene.


  1. (a) J. C. Mol, J. Mol. Catal. 2004, 213, 39; (b) L. F. Heckelsberg, R. L. Banks and G. C. Bailey, Ind. Eng. Chem. Prod. Res. Dev. 1968, 7, 29.
  2. A. Spamer, T. I. Dube, D. J. Moodley, C. van Schalkwyk and J. M. Botha, Appl.Catal.A 2003, 255, 153.
  3. Y. Chauvin, Angew. Chem., Int. Ed. 2006, 45, 3740.
  4. Taoufik, M.; Le Roux, E.; Thivolle-Cazat, J.; Basset, J.-M. Angew. Chem. Int. Ed. 2007, 46, 7202 –7205.
  5. Mazoyer, E.; Szeto, K.C.; Merle, N.; Thivolle-Cazat, J.; Boyron, O.; Basset, J.-M.; Nicholas, C.P.; Taoufik, M. J. Mol. Catal. A, 2014, in press.
  6. Mazoyer E.; Szeto K. C.; Merle, N.; Norsic, S.; Boyron, O.; Basset J.-M.; Taoufik, M.; Nicholas, C. P. J. Catal. 2013, 301, 1-7.
  7. Mazoyer, E.; Szeto, K. C.; Norsic, S.; Garron, A.; Basset, J.-M.; Nicholas, C. P.; Taoufik, M. ACS Catalysis, 2011, 1, 1643-6.
  8. Mazoyer E.; Szeto K. C; Basset J.-M.; Nicholas, C. P; Taoufik, M. Chem. Commun. 2012, 48, 3611-13.
  9. Szeto, K.C.; Mazoyer, E.; Merle, N.; Norsic, S.; Basset, J.-M.; Nicholas, C.P.; Taoufik, M. ACS Catalysis 2013, 3, 2162-8.

Christopher_P_NicholasBiography – Chris joined UOP in 2006 after earning a Ph.D. from Northwestern University and working in the Hard Materials Center of Excellence at Sigma-Aldrich. He has worked in the Catalysis and Exploratory Research departments and is currently focused on New Materials Research. Chris is an inventor or co-inventor on 30+ US and foreign patents and coauthor of 13 peer reviewed journal articles and a book chapter. He has been involved with the Chicago Catalysis Club since graduate student days and is currently serving as the Program Chair for the Chicago Catalysis Club. Chris’ research interests encompass the gamut of inorganic and catalytic technologies ranging from materials synthesis to characterization to catalyst and process development. He has particularly enjoyed understanding the relationship between homogeneous and heterogeneous catalysts.

Analy­sis of the Mech­a­nism of Elec­tro­chem­i­cal Oxy­gen Reduc­tion and Devel­op­ment of Ag– and Pt-alloy Cat­a­lysts for Low Tem­per­a­ture Fuel Cells

2014 Spring Symposium

Suljo Linic

Abstract – The oxygen reduction reaction (ORR) is the major source of overpotential loss in low-temperature fuel cells. Expensive, Pt-based materials have been found to be the most effective catalysts, but exploration of alternatives has been hampered by stability constraints at the typical operating conditions of low pH and high potential.

I will discuss how we studied elementary mechanism of ORR on various metal electrodes using kinetic and micro-kinetic analysis of reaction pathways and quantum chemical calculations. These studies allowed us to identify the elementary steps and molecular descriptors that govern the rate of ORR. Using these performance descriptors we have been able to identify families of Pt and Ag-based alloys that exhibit superior ORR performance is acid and base respectively.

We have synthesized these alloys to demonstrate the superior ORR activity with rotating disk electrode experiments. We have also performed thorough structural characterization of the bulk and surface properties with a combination of cyclic voltammetry, x-ray diffraction, and electron microscopy with spatially resolved energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy.


  1. Holewinski and Linic. J. Electrochem. Soc. 159, (2012).

Suljo_LinicBiography – Prof. Linic obtained his PhD degree, specializing in surface and colloidal chemistry and heterogeneous catalysis, at the University of Delaware in 2003 under the supervision of Prof. Mark Barteau after receiving his BS degree in Physics with minors in Mathematics and Chemistry from West Chester University in West Chester (PA). He was a Max Planck postdoctoral fellow with Prof. Dr. Matthias Scheffler at the Fritz Haber Institute of Max Planck Society in Berlin (Germany), working on first principles studies of surface chemistry. He started his independent faculty career in 2004 at the Department of Chemical Engineering at the University of Michigan in Ann Arbor where he is currently the Class of 1983 Faculty Scholar Professor of chemical engineering.

Prof. Linic’s research has been recognized through multiple awards including the 2014 ACS (American Chemical Society) Catalysis Lectureship for the Advancement of Catalytic Science, awarded annually by the ACS Catalysis journal and Catalysis Science and Technology Division of ACS, the 2011 Nanoscale Science and Engineering Forum Young Investigator Award, awarded by American Institute of Chemical Engineers, the 2009 ACS Unilever Award awarded by the Colloids and Surface Science Division of ACS, the 2009 Camille Dreyfus Teacher-Scholar Award awarded by the Dreyfus Foundation, the 2008 DuPont Young Professor Award, and a 2006 NSF Career Award. Prof. Linic has presented more than 100 invited and keynote lectures and published more than 50 peer reviewed articles in leading journals in the fields of general science, Physics, Chemistry, and Chemical Engineering.

Wel­come to HEL – Bet­ter Chem­istry – Faster

2014 Spring Symposium


HEL is a leading equipment provider for catalytic processes in chemical, petrochemical and pharmaceutical Industry. Stirred and fixed-bed reactors for catalytic & thermal conversions (hydrogenation reactor, polymerization, hydrocracking, bio-fuel synthesis etc.) are supplied to a range of industries. Often at elevated temperature & pressure, HEL specializes in research scale, multi-reactor and high pressure reactors processing, testing, equipment and systems. Custom designs to client flow sheets are also supplied including pilot scale processes.

Life Cycle of Cat­alytic Diesel Emis­sion Con­trol Sys­tems

2014 Spring Symposium

Aleksey Yezerets, Neal Currier, Krishna Kamasamudram, Junhui Li, Hongmei An, Ashok Kumar, Jinyong Luo, Saurabh Joshi

Abstract – A diverse spectrum of highly capable diesel catalytic emission control systems has emerged in the recent years, in response to stringent environmental regulations in several leading world markets. By taking the brunt of the emission reduction, these highly effective systems allowed the engines to be designed and tuned for maximum fuel efficiency and minimum CO2 emissions.

Unlike their gasoline emission control predecessors, diesel systems include multiple catalysts with distinct functions, along with a variety of sensors and actuators, thus representing veritable chemical plants. For example, the emission control system commercialized in Cummins-powered 2010 heavy-duty diesel vehicles includes four distinct catalytic devices, a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (DPF), selective catalytic reduction (SCR) catalyst, and an ammonia slip selective oxidation catalyst (ASC). The system further includes eight sensors, and two fluid injectors, along with the respective controls and diagnostic algorithms. Another system, commercialized by Cummins in 2007 and 2010 Dodge Ram pickups, is based on a NOx adsorber catalyst and represents similar level of sophistication. Underlying the system-level complexity is the intricacy of the individual catalytic elements, some of which include multiple distinct chemical functions and complex topology.

Predictably, lifecycles of such systems are shaped by the behaviors of the individual catalytic elements and their interactions. These often feature a variety of reversible processes, in response to deposition and removal of various poisons and masking agents, reversible chemical and morphological changes, along with irreversible degradation, often referred to as aging.

In this presentation, we will review several examples of interactions between catalysts in the context of the above diesel emission control systems, emphasizing how the recent advances in their practical application were underpinned by the developments in the broader field of heterogeneous catalysis and reaction engineering.
Aleksey_YezeretsBiography – At Cummins, the world’s largest independent manufacturer of diesel engines and related equipment, Dr. Yezerets leads an R&D team responsible for guidance and support of emission control products at all stages of their lifecycle, and coordinates a portfolio of collaborative research programs with National Labs, universities and industrial partners. Dr. Yezerets serves on the Editorial Board of the Journal of Applied Catalysis B: Environmental, has acted as a guest editor of three issues of the Catalysis Today Journal, and organized a number of environmental catalysis sessions in industrial and academic meetings. He has received 11 US patents, published over 50 peer-reviewed articles, as well as presented numerous invited, keynote, and award lectures. Dr. Yezerets has a special appointment to the Graduate Faculty of Chemical Engineering at Purdue University. His contributions to the field of catalytic emission control were recognized by the Herman Pines Award in Catalysis, R&D 100 Award, national awards by the American Chemical Society, American Institute of Chemical Engineers, and Society Automotive Engineering, as well as Julius Perr Award for Innovation by Cummins.

Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride

Meeting Program – January 2014

Eyas Mahmoud†, Donald A. Watson‡ and Raul F. Lobo†
†Catalysis Center for Energy Innovation
Department of Chemical and Biomolecular Engineering
University of Delaware
Newark, DE 19716 USA
‡Department of Chemistry and Biochemistry
University of Delaware
Newark, DE 19716 USA

Abstract – A route to renewable phthalic anhydride (2-benzofuran-1,3-dione) from biomass-derived furan and maleic anhydride (furan-2,5-dione) is investigated. Furan and maleic anhydride were converted to phthalic anhydride in two reaction steps: Diels Alder cycloaddition followed by dehydration. Excellent yields for the Diels-Alder reaction between furan and maleic-anhydride were obtained at room temperature and solvent-free conditions (SFC) yielding 96% exo-4,10-Dioxa-tricyclo[]dec-8-ene-3,5-dione (oxanorbornene dicarboxylic anhydride) after 4 hrs of reaction. It is shown that this reaction is resistant to thermal runaway because its reversibility and exothermicity. The dehydration of the oxanorbornene was investigated using mixed-sulfonic carboxylic anhydrides in methanesulfonic acid (MSA). An 80% selectivity to phthalic anhydride (87% selectivity to phthalic anhydride and phthalic acid) was obtained after running the reaction for 2 hrs at 298 K to form a stable intermediate followed by 4 hrs at 353 K to drive the reaction to completion. The structure of the intermediate was determined. This result is much better than the 11% selectivity obtained in neat MSA using similar reaction conditions.
Biography – Eyas Mahmoud, recipient of the AIChE SCI Scholar award, graduated summa cum laude from from the University of Pennsylvania with a B.S.E.in Chemical and Biomolecular Engineering in 2011. Since then he received the NSF Graduate Research Fellowship (GRFP) and went on to pursue a Ph.D. in the Department of Chemical and Biomolecular Engineering from the University of Delaware, under the supervision of Professor Raul F. Lobo. His thesis work focuses on the renewable production of aromatics from biomass-feedstocks. Recently, he has published work on the renewable production of phthalic anhydride from furan and maleic anhydride by using mixed sulfonic-carboxylic anhydrides.