Thermodynamics and kinetics of elementary reaction steps on late transition metal catalysts, and using them to search for better catalysts

Meeting Program – November 2013

Charles T. Campbell
Departments of Chemistry and of Chemical Engineering
University of Washington
Seattle, WA 98195-1700

Abstract – A survey of experimental and theoretical results concerning the thermodynamics and kinetics of surface chemical reactions of importance in late transition metal catalysis for energy technology will be presented. Topics include: (1) calorimetric measurements of the adsorption energies of small molecules and molecular fragments on single crystal surfaces, and their comparison to DFT results; (2) new measurements of the entropies of adsorbates and the trends they follow, and (3) new ways to estimate prefactors in the rate constants for elementary steps in surface reactions. We will also discuss how to use these together with DFT calculations and/or elementary-step rate measurements to build microkinetic models for multi-step catalytic reactions. Finally, we will discuss a method for analyzing these to quantify the extent to which each elementary step and intermediate controls the net rate, and describe how one can use this to define the key descriptors that can be used for computational searches to discover better catalyst materials.
Charles_Campbell2-1024x853Biography – Charles T. Campbell is the Rabinovitch Endowed Chair in Chemistry at the University of Washington, where he is also Adjunct Professor of Chemical Engineering and of Physics. He is the author of over 270 publications on surface chemistry, catalysis and biosensing. He is an elected Fellow of both the ACS and the AAAS, and Member of the Washington State Academy of Sciences. He received the Arthur W. Adamson Award of the ACS and the ACS Award for Colloid or Surface Chemistry, the Gerhard Ertl Lecture Award, the Robert Burwell Award/Lectureship of the North American Catalysis Society, the Ipatieff Lectureship at Northwestern University and an Alexander von Humboldt Research Award. He served as Chair, Chair-Elect, Vice-Chair and Treasurer of the Colloid and Surface Chemistry Division of the ACS. He served as founding Co-Director and Director of the University of Washington’s Center for NanoTechnology, and as Editor-in-Chief of the journal Surface Science for ten years. He is currently Editor-in-Chief of Surface Science Reports, and serves on the Editorial Boards of the Journal of Physical Chemistry and Catalysis Reviews and the Scientific Advisory Board of Catalysis Letters and Topics in Catalysis. He received his B.S. in Chemical Engineering (1975) and his Ph.D. in Physical Chemistry (1979, under J. M. White) from the University of Texas at Austin, and then did research in Germany under Gerhard Ertl (2007 Nobel Prize Winner) through 1980.

Developing Ceria-Based Catalysts

Meeting Program – October 2013

Raymond J. Gorte
Department of Chemical & Biomolecular Engineering
University of Pennsylvania
Philadelphia, PA 19104

Abstract – Ceria-supported metal catalysts are widely used in automotive emissions control, where ceria provides “Oxygen Storage Capacitance”. Ceria-supported metals also have potential for a large number of other applications, ranging from methane oxidation to the water-gas-shift reaction, due to the enhanced properties that ceria imparts. However, the activities and stabilities depend strongly on the structure of the ceria and whether or not it is mixed with a second oxide. Catalyst properties are also affected by how catalytic metals interact with the support.

In this talk, I will first discuss work aimed at understanding the role that ceria plays in oxygen storage and demonstrate that the thermodynamic redox properties of catalytic forms of ceria differ from that of bulk ceria. I will then talk about our efforts to maximize the interactions between catalytic metals and ceria, as well as prevent sintering of the metal particles, through the preparation of core-shell catalysts deposited onto a functionalized-alumina support. These core-shell catalysts exhibit exceptional activity for methane oxidation, with impressive stability at high temperatures.
ray_gorteBiography – Raymond J. Gorte joined the faculty at the University of Pennsylvania in 1981 after receiving his PhD in Chemical Engineering from the University of Minnesota. He is currently the Russell Pearce and Elizabeth Crimian Heuer Professor of Chemical & Biomolecular Engineering, with a secondary appointment in Materials Science & Engineering. Since joining Penn, Ray has served as Chairman of Chemical Engineering from 1995 to 2000 and was the Carl V. S. Patterson Professor of Chemical Engineering from 1996 through 2001. He received the 1997 Parravano Award of the Michigan Catalysis Society, the 1998 Philadelphia Catalysis Club Award, the 1999 Paul Emmett Award of the North American Catalysis Society, the 2001 Penn Engineering Distinguished Research Award, and the 2009 AIChE Wilhelm Award. He has served as Chairman of the Gordon Conference on Catalysis (1998) and Program Chairman of the 12th International Zeolite Conference (1998). He is an Associate Editor of the Journal of the Electrochemical Society. His present research interests are focused on electrodes for solid-oxide fuel cells and the catalytic properties of core-shell materials. He is also known for his research on zeolite acidity and for metal-support effects, especially with ceria-supported precious metals, used in automotive emissions control.

Kinetics and Mechanisms of C-C Forming and C-O Cleavage Reactions of Interests in Bio-oil Upgrading

Meeting Program – September 2013

Daniel E. Resasco
University of Oklahoma
Norman, OK

Abstract – Bio-oil produced by fast pyrolysis of lignocellulosic biomass has attracted considerable attention as an intermediate liquid product towards the production of fuels. However its chemical instability, high viscosity, and corrosiveness limit their processability and storage. One of the greatest challenges in the upgrading of bio-oil is the accelerated degradation that occurs when the condensed liquid is subsequently heated for fractionation or other processing. Catalytic upgrading is an attractive strategy that can be used to optimize carbon efficiency and minimize hydrogen usage. Important reactions for this upgrading include:

  • Formation of C-C bonds to extend the carbon backbone of short oxygenates to the desired gasoline/diesel range via aldol condensation and ketonization in aqueous phase
  • Incorporation of short carbon fragments (C1-C3) into the aromatic ring of phenolic compounds via alkylation in biphasic systems
  • Deoxygenation of the resulting products to monofunctional compounds or hydrocarbons in the liquid phase.

We have investigated the kinetics and reaction mechanisms of these reactions on different catalysts, including metals supported on reducible oxides (e.g. Ru/TiO2); acidic catalysts (HY, H-beta zeolites), supported metal catalysts (Cu, Ni, Ru, Pd supported on carbon nanotubes) and amphiphilic nanoparticle catalysts that are able stabilize water/oil emulsions and to conduct reactions at the liquid/liquid interface to benefit from the differences in solubility exhibited by the reactants (bio-oil) and products (bio-fuels) and achieve continuous reaction/separation.

  1. “Improving carbon retention in biomass conversion by alkylation …” Appl. Catal. A 447, 14, 2012.
  2. “Aqueous Phase Ketonization of Acetic Acid over Ru/TiO2/Carbon Catalysts” J. Catal. 295, 169, 2012.
  3. “Hydrophobic zeolites for biofuel upgrading at the liquid-liquid interface … JACS134, 8570, 2012.
  4. “What Should We Demand from the Catalysts Responsible for Upgrading Biomass?” J. Phys. Chem. Lett., 2, 2294, 2011.
  5. “Selective Conversion of Furfural to Methylfuran over Ni-Fe Catalysts,” J. Catal. 284, 90, 2011.
  6. “Bifunctional transalkylation and hydrodeoxygenation of anisole over Pt/HBeta,” J. Catal. 281, 21, 2011.
  7. “Conversion of furfural and 2-methylpentanal on Pd–Cu catalysts” J. Catal. 280, 17, 2011.
  8. catalys isclubphi l

  9. “Kinetics and mechanism of hydrogenation of furfural on Cu catalysts,” J. Catal. 277, 1, 2011.
  10. “Role of transalkylation in the conversion of anisole over HZSM-5,” Appl. Catal. A, 379, 172, 2010.
  11. “Solid Nanoparticles that Catalyze Biofuel Upgrade at the Water-Oil Interface, ” Science, 327, 68, 2010.

Daniel_ResascoBiography – Daniel E. Resasco is a Professor of Chemical, Biological, and Materials Engineering at the University of Oklahoma. He holds the D. Bourne endowed Chair. He received his PhD from Yale University in 1983. He is author of more than 200 publications and 35 industrial patents in the areas of heterogeneous catalysis and carbon nanotubes and has received more than 8,000 citations. He has been a Presidential Professor, S. Wilson Professor, and in the last few years he was awarded the Oklahoma Chemist of the Year award by the American Chemical Society, the Yale Science and Engineering Association award, and the Regents Award for Superior Research. He is the founder of SouthWest Nanotechnologies, a commercial carbon nanotube producer that operates in Norman, OK. He has been Editor of the Journal of Catalysis, and has been a member of the editorial board of Applied Catalysis and Journal of Catalysis.

Polar Substrates and Nonstoichiometric Surfaces: New Routes to Active and Controllable Heterogeneous Catalysts

2013 Spring Symposium

Andrew M. Rappe
Pennergy Co-Director
Department of Chemistry
University of Pennsylvania
Philadelphia, PA 19104

Abstract – The quest to design surfaces with useful catalytic activity has received a dramatic boost from modern techniques of oxide epitaxial growth and characterization. This unprecedented experimental control of oxide surfaces opens great opportunities to design new catalysts using theory and modeling. In this talk, I will describe a variety of new approaches for tailoring surface properties by controlling oxide composition and structure, before focusing on two specific examples. 1. Polar oxides show structural deformations that change the structure and composition of surfaces. 2. Annealing complex oxides can lead to surface reconstructions with compositions different from any bulk material. These techniques lead to surfaces with undercoordinated transition metal cations that should offer novel reactivity.

Andrew M. Rappe

Andrew M. Rappe

Biography – Andrew M. Rappe is a Professor of Chemistry and Professor of Materials Science and Engineering at the University of Pennsylvania. He received his A. B. in “Chemistry and Physics” summa cum laude from Harvard University in 1986, and his Ph. D. in “Physics and Chemistry” from MIT in 1992. He was an IBM Postdoctoral Fellow at UC Berkeley before starting at Penn in 1994.

Andrew received an NSF CAREER award in 1997, an Alfred P. Sloan Research Fellowship in 1998, and a Camille Dreyfus Teacher-Scholar Award in 1999. He was named a Fellow of the American Physical Society in 2006.

Andrew is one of the two founding co-directors of Pennergy: the Penn Center for Energy Innovation. He is also one of the founding co-directors of the VIPER honors program at Penn, the Vagelos Integrated Program in Energy Research.

His current research interests revolve around ferroelectric phase transitions in oxides, surface chemistry and catalysis of complex oxides, and the interplay between the two: a) He helped establish relationships between composition and ferroelectric phase transition temperature in bismuth-containing perovskites oxides, b) He predicted that changing chemical vapor composition above a ferroelectric oxide could reorient its polarization, c) He revealed the mechanism of domain wall motion in ferroelectric oxides, d) He showed that changing ferroelectric polarization dramatically changes catalytic activity of supported metal films and nanoparticles, and e) He uses computational materials design to invent new ferroelectric photovoltaics for solar applications.

Software Tools for the Construction of Detailed Kinetic Models

2013 Spring Symposium

Michael T. Klein
Director, University of Delaware Energy Institute
Dan Rich Chair of Energy
Department of Chemical Engineering
University of Delaware
Newark, DE 19716

Abstract – The world-wide energy transportation sector is almost entirely dependent on petroleum, a remarkable resource on which a highly sophisticated refining and vehicle infrastructure has grown. Given the capital value of the existing world-wide refining and transportation infrastructures, and the decadal characteristic time for their change, it is likely that carbon-based resources, including unconventional feedstocks that will be upgraded for use with petroleum in the existing infrastructure, will be utilized for decades to come. Mathematical models of the chemistry of their upgrading and conversion will assist the commercial realization of these possibilities.

The considerable interest in molecule-based models of these chemistries is motivated by the need to predict both upstream and downstream properties. This is because the molecular composition is an optimal starting point for the prediction of mixture properties. The challenge of building these models is due to the staggering complexity of the complex reaction mixtures. There will often be thousands of potential molecular and intermediate (e.g., ions or radicals) species. Clearly, the use of the computer to not only solve but also formulate the model would be helpful in that it would allow the modeler to focus on the basic chemistry, physics and approximations of the model.

Our recent work has led to the development of an automated capability to model development. Statistical simulation of feedstock structure casts the modeling problem in molecular terms. Reactivity information is then organized in terms of quantitative linear free energy relationships. The model equations are then built and coded on the computer. Solution of this chemical reaction network, in the context of the chemical reactor, provides a prediction of the molecular composition, which is then organized into any desired commercially relevant outputs. Of particular note is the Attribute Reaction Model approach that is useful when the number of desired components in the molecular mixture is constrained by the practical limits of hardware and software.

Michael T. Klein

Michael T. Klein

Biography – Michael T. Klein started his career at the University of Delaware, where he served as the Elizabeth Inez Kelley Professor of Chemical Engineering as well as Department Chair, Director of the Center for Catalytic Science and Technology, and Associate Dean. He then moved to Rutgers, The State University of New Jersey, to become the Dean of Engineering and the Board of Governors Professor of Chemical Engineering. On July 1, 2010, he returned to the University of Delaware to assume his present position as the Director of the University of Delaware Energy Institute and the Dan Rich Chair of Energy.

Professor Klein received a BChE from the University of Delaware in 1977 and a Sc. D. from MIT in 1981, both in Chemical Engineering. The author of over 200 technical papers and the lead author of the text Molecular Modeling in Heavy Hydrocarbon Conversions, he is active in research in the area of chemical reaction engineering, with special emphasis on the kinetics of complex systems. He is the Editor-in-Chief of the ACS journal Energy and Fuels and has received the R. H. Wilhelm Award in Chemical Reaction Engineering from the AIChE, the NSF PYI Award and the ACS Delaware Valley Section Award. In 2011 Professor Klein was elevated to the level of Fellow of the ACS.

Catalytic Characterization of Hierarchical Meso-/microporous Lamellar Zeolite Catalysts

2013 Spring Symposium

Dongxia Liu
Department of Chemical and Biomolecular Engineering
University of Maryland
College Park, MD 20742

Abstract – The meso/micro-zeolites couple the catalytic features of micropores and the improved access and transport consequence of mesopores in a single material, possessing the capacity of processing large molecules. The synthesis and catalytic behavior investigation of meso/micro-zeolites has become the subject of intense research. This talk highlights the synthesis and catalytic characterizations of three emerging acidic meso-/micro-porous lamellar zeolite materials (self-pillared MFI, pillared MFI, multilamellar MFI), with a focus on their catalytic behavior investigations using ethanol dehydration, monomolecular conversion of propane and isobutane, and alkylation of mesitylene with benzyl alcohol as probe reactions. The rate and apparent activation energy of the catalytic ethanol and small alkane probe reactions in zeolites possessing dual micro- and meso-porosity was comparable to conventional microporous MFI materials, implying that the catalytic behavior of Brønsted acid sites in materials with dual meso-/micro-porosity is preferentially dominated by the microporous environment possibly because it provides a better fit for adsorption of small alkane or alcohol reactant molecules. The apparent rate constant of the catalytic alkylation of mesitylene with benzyl alcohol in meso/micro-porous zeolites was higher than that of their microporous analogues, revealing the role of the mesoporosity in space-demanding catalytic reactions. A mathematical model accounts for the external reaction, internal reaction, and diffusion developed to understand the catalytic behaviors of these catalysts.

Dongxia Liu

Dongxia Liu

Biography – Dongxia Liu received her Ph.D. in chemical engineering from University of Rochester in 2009. Her PhD work focused on Development of Novel Electrolyte Membranes for Intermediate Temperature Fuel Cells. After graduation, she did two year of post-doctorate in University of Minnesota with Prof. Michael Tsapatsis and Prof. Aditya Bhan, focusing on the synthesis and characterization of novel meso-/microporous zeolite catalysts. In 2012, Dongxia Liu joined the department of chemical and biomolecular engineering at the University of Maryland as an assistant professor. Her research interests lie in the synthesis, characterization and evaluation of novel hierarchical meso-/microporous materials, which are used as efficient catalysts in diffusion constrained reactions and as selective membranes for water purification applications.

Catalysis in a Pocket: The MCM-22 Story

2013 Spring Symposium

2012 Ciapetta Award Lecture

Thomas F. Degnan, Jr.
ExxonMobil Research and Engineering Company
Annandale, NJ 08801

Abstract – MCM-22 (MTW) is among a unique class of multidimensional pore shape selective zeolites wherein the principal locus for catalysis is in 12 member ring (12-MR) surface pockets. The zeolite contains two independent pore systems, both of which are accessed through rings comprised of ten tetrahedral (T) atoms (such as Si, Al, and B). One of these pore systems is defined by two-dimensional, sinusoidal channels and the other is defined by large 12-MR supercages with an inner free diameter of 0.71 nm and a height of 1.82 nm. Virtually all acid catalyzed reactions take place in pockets formed from the surface termination of the 1.82 nm high and 0.71 nm diameter supercages. The zeolite has been evaluated and found promising for a number of acid-catalyzed reactions. Most importantly, it has been found to be unusually selective for aromatic alkylation in the presence of a wide range of olefins under liquid phase conditions. This presentation will describe the discovery, development and commercial deployment of this zeolite that is used widely in several aromatic alkylation processes.

Thomas F. Degnan

Thomas F. Degnan

Biography – Tom received his B.S. in chemical engineering from the University of Notre Dame, a Ph.D. in the same discipline from the University of Delaware, and an M.B.A. in Finance from the University of Minnesota. He spent four years in 3M’s Central Research organization in St. Paul, MN before moving to Mobil Research and Development in 1980.

Tom has spent most of his career in exploratory process development, catalysis, catalyst development, and research management working for Mobil and now ExxonMobil Research and Engineering Company. He is presently Manager, New Leads Generation and Breakthrough Technologies and is located at ExxonMobil’s Clinton, NJ facility.

He is a member of the North American Catalysis Society, the American Institute of Chemical Engineers, the American Chemical Society and the Research and Development Council of New Jersey.