Science and Technology of Framework Metal-Containing Molecular Sieves Catalysts

2017 Spring Symposium

Laszlo Nemeth, Department of Chemistry and Biochemistry, University of Nevada Las Vegas

Abstract – Since the discovery of titanium silicalite (TS-1) more than 30 years ago framework metal-containing molecular sieves have become an important class of catalyst, finding application in several industrial processes. Incorporation of titanium, gallium, iron, tin and other elements into molecular sieves frameworks has led to both scientific progress and engineering innovations in catalysis. As a result of these developments, framework metal-containing zeolites have been implemented in the preceding decade in new commercial, byproduct-free green processes, which have improved sustainability in the chemical industry. Based on a comprehensive analysis of the recent literature including patents, this review is a summary of the current knowledge of the science and technology of framework metal-containing molecular sieves. The synthesis of these materials is summarized, followed by an account of state-of-the-art characterization methods. The key catalytic chemistries, which can be classified into oxidation reactions such as olefin epoxidation, aromatic hydroxylation and ammoximation, and Lewis acid-catalyzed reactions, are discussed. Mechanisms proposed for these transformations are reviewed, together with the theoretical and modeling tools applied in this context. An overview of the commercial technologies associated with the use of framework metal-containing molecular sieves ( Titanium and Gallium Molecular sieves) materials will be presented. The paper will be discuss the current activity on framework Tin Beta Zeolite, which shown unique “Zeoenzyme” selectivities in multiple applications. Some new chemistry using Sn-zeolites will be presented also to produce new product from biomass.

Biography – Laszlo Nemeth earned a Bachelor’s Degree in Chemistry and Doctor of Science in chemical engineering from University of Debrecen, Hungary.

Upon graduation he was assistant professor in Department of Chemical Technology at same University and later scientist/ manager at Hungarian High Pressure Institute, Hungary.

UOP invited him to join to Corporate Research in Des Plaines, IL, He worked for UOP LLC a Honeywell Company 23 years as senior research associate, with joint appointment as an adjunct professor at Chemical Engineering Department of University of Illinois at Chicago.

During his research career at UOP he was principal investigator of multiple successful projects in the area of material science, adsorption and catalysis. His expertise also includes zeolite application for UOP’s catalytic processes, metal-zeolites, solid and liquid superacids, hydrogen peroxide synthesis and new applications.

Laszlo joined the Chemistry and Biochemistry Department of University of Nevada Las Vegas in 2015 as a research professor. Currently he is working on bimetallic-zeolite synthesis and applications, Lithium Ion Battery recirculation, and develop new Thermochromic nanomaterials.

He spent his sabbatical with George Olah (Nobel Laureate) and Avelino Corma (ITQ Spain).

Dr. Nemeth was awarded with Stein Star award and Honeywell’s excellence in Innovation. He published 50+ papers and 90+ patents.