Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride

Meeting Program – January 2014

 
Eyas Mahmoud†, Donald A. Watson‡ and Raul F. Lobo†
†Catalysis Center for Energy Innovation
Department of Chemical and Biomolecular Engineering
University of Delaware
Newark, DE 19716 USA
 
‡Department of Chemistry and Biochemistry
University of Delaware
Newark, DE 19716 USA

 
Abstract – A route to renewable phthalic anhydride (2-benzofuran-1,3-dione) from biomass-derived furan and maleic anhydride (furan-2,5-dione) is investigated. Furan and maleic anhydride were converted to phthalic anhydride in two reaction steps: Diels Alder cycloaddition followed by dehydration. Excellent yields for the Diels-Alder reaction between furan and maleic-anhydride were obtained at room temperature and solvent-free conditions (SFC) yielding 96% exo-4,10-Dioxa-tricyclo[5.2.1.0]dec-8-ene-3,5-dione (oxanorbornene dicarboxylic anhydride) after 4 hrs of reaction. It is shown that this reaction is resistant to thermal runaway because its reversibility and exothermicity. The dehydration of the oxanorbornene was investigated using mixed-sulfonic carboxylic anhydrides in methanesulfonic acid (MSA). An 80% selectivity to phthalic anhydride (87% selectivity to phthalic anhydride and phthalic acid) was obtained after running the reaction for 2 hrs at 298 K to form a stable intermediate followed by 4 hrs at 353 K to drive the reaction to completion. The structure of the intermediate was determined. This result is much better than the 11% selectivity obtained in neat MSA using similar reaction conditions.
 
Biography – Eyas Mahmoud, recipient of the AIChE SCI Scholar award, graduated summa cum laude from from the University of Pennsylvania with a B.S.E.in Chemical and Biomolecular Engineering in 2011. Since then he received the NSF Graduate Research Fellowship (GRFP) and went on to pursue a Ph.D. in the Department of Chemical and Biomolecular Engineering from the University of Delaware, under the supervision of Professor Raul F. Lobo. His thesis work focuses on the renewable production of aromatics from biomass-feedstocks. Recently, he has published work on the renewable production of phthalic anhydride from furan and maleic anhydride by using mixed sulfonic-carboxylic anhydrides.