Design of complex metal/metal-oxide heterogeneous catalytic materials for energy and chemical conversion

2017 Spring Symposium

Eranda Nikolla, Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI

Abstract – Dwindling fuel resources and high levels of CO2 emissions have increased the need for renewable energy resources and more efficient energy conversion and storage systems. In this talk, some of our recent work on designing efficient (active, selective and stable) catalytic systems for energy and chemical conversions will be discussed. First, I will talk about our work on designing layered nickelate oxide electrocatalysts for electrochemical oxygen reduction and evolution reactions. These processes play an important role in fuel cells, electrolyzers and Li-air batteries. We have utilized density functional theory (DFT) calculations to identify the factors that govern the activity of nickelate oxides toward these processes. Using a reverse microemulsion approach we demonstrate an approach for synthesizing nanostructured nickelate oxide electrocatalysts with controlled surface structure. These nanostructures are thoroughly characterized using atomic-resolution high angle annular dark field (HAADF) imaging along with electron energy-loss spectroscopy (EELS) performed using an aberration corrected scanning transmission electron microscope (STEM). Controlled kinetic isotopic and electrochemical studies are used to develop structure/performance relationships to identify nickelate oxides with optimal electrocatalytic activity. Secondly, I will discuss our efforts on designing efficient catalytic systems for biomass conversion processes. Development of active and selective catalysts for biomass conversion is critical in realizing a renewable platform for fuels and chemicals. I will highlight some of our recent work on utilizing reducible metal oxide encapsulated noble metal catalytic materials to promote hydrodeoxygenation (HDO) of biomass-derived compounds. We show enhancement in HDO activity and selectivity due to the encapsulation of the metal nanoparticles by an oxide film providing high interfacial contact between the metal and metal oxide sites, and restrictive accessible conformations of aromatics on the metal surface.

Biography – Eranda Nikolla is an assistant professor in the Department of Chemical Engineering and Materials Science at Wayne State University since Fall 2011. Her research interests lie in the development of heterogeneous catalysts and electrocatalysts for chemical conversion processes and electrochemical systems (i.e., fuel cells, electrolyzers) using a combination of experimental and theoretical techniques. Dr. Nikolla received her Ph.D. in Chemical Engineering from University of Michigan in 2009 working with Prof. Suljo Linic and Prof. Johannes Schwank in the area of solid-state electrocatalysis. She conducted a two-year postdoctoral work at California Institute of Technology with Prof. Mark E. Davis prior to joining Wayne State University. At Caltech she developed expertise in synthesis and characterization of meso/microporous materials and functionalized surfaces. Dr. Nikolla is the recipient of a number of awards including the National Science Foundation CAREER Award, the Department of Energy CAREER Award, 2016 Camille Dreyfus Teacher-Scholar Award and the Young Scientist Award from the International Congress on Catalysis.